88889.ru

Отделка плиткой и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

2154602 способ получения серного цемента

2154602 способ получения серного цемента

Согласно ГОСТ 969-91 содержание глинозема А12О3 в глиноземистом цементе (ГЦ) должно быть не менее 35 %. Наряду с глиноземистыми цементами выпускают цементы высокоглиноземистые (ВГЦ) с содержанием А12О3 60—80 %. Так в цементе ВГЦ I должно быть не менее 60 %, в цементе ВГЦ II – не менее 70 %. а в цементе ВГЦ III – не менее 80 % А12О3. Влияние отдельных оксидов на технологию получения и свойства глиноземистого цемента сводится к следующему. А12О3 обеспечивает легкоплавкость сырьевой смеси и образование алюминатов кальция, определяющих строительно-технические свойства глиноземистого цемента. СаО входит в состав всех основных минералов цемента. По содержанию СаО цементы разделяют на высокоизвестковые (СаО более 40 %) и низкоизвестковые (СаО менее 40 %). SiO2 и Fe2O3 в целом нежелательные составляющие сырьевой смеси, однако в небольших количествах (SiO2 4—5 %, Fe2O3 5—10 %) они способствуют более равномерному плавлению шихты и улучшению процесса минералообразования. MgO уменьшает температуру плавления сырьевой смеси и вязкость расплавов, однако избыток MgO (более 2 %) снижает активность клинкера. Щелочи также снижают температуру плавления сырьевой смеси, но отрицательно влияют на качество цемента. Минералогический состав глиноземистого цемента зависит от состава исходного сырья и технологии производства. Важнейший минерал глиноземистого цемента — моноалюминат кальция СаО-А12О3, который обеспечивает при нормальных сроках схватывания быстрое твердение цемента. Однокальциевый алюминат может образовываться как по реакциям в твердой фазе, так и путем кристаллизации из расплава. Условия обжига и охлаждения определяют форму и размер кристаллов СА.

В состав глиноземистого цемента входят и другие низкоосновные алюминаты: 5СаО-ЗА12О3, 12СаО-7А12О3, СаО-2А12О3. C5A3 и C12A7 взаимодействуют с водой очень активно и схватываются уже в течение нескольких минут; СА2 гидратируется менее энергично. Присутствие в сырье кремнезема и оксида железа обусловливает образование в клинкере глиноземистого цемента белита и твердых растворов алюмоферритов. Гидравлическая активность фаз, содержащих оксид железа, значительно ниже активности чистых кальциевых алюминатов. Двухкальциевый силикат — фактически инертная составляющая глиноземистого цемента, поскольку в сроки его твердения гидратации C2S не происходит.

В качестве основного сырья для изготовления глиноземистого цемента используют бокситы и известняки (или известь). Боксит представляет собой гидроксид алюминия с примесями SiO2, Fe2O3, ТiO2, СаО и MgO. По количеству связанной воды различают бокситы, приближающиеся к диаспорам (А12О3-Н2О) и к гидроаргиллитам (А12О3-ЗН2О). Плотность боксита 2800—3500 кг/м3 в зависимости от содержания железа. Пригодность бокситов для производства глиноземистого цемента оценивают по величине их кремниевого модуля, представляющего отношение содержания А12О3 к SiO2 (по массе). Этот показатель должен быть не менее 5—6.

К известняку, используемому для производства глиноземистого цемента, не предъявляется каких-либо особых требований, кроме ограничения содержания SiO2 (до 1,5 %) и MgO (до 2 %). Особенно нежелательно присутствие в сырье кремнезема, который при взаимодействии с СаО и А12О3 образует геленит C2AS. На каждый процент кремнезема получается 4,5 % геленита. Поскольку геленит в кристаллическом виде гидравлической активностью не обладает, то значительная часть глинозема связывается в инертном соединении.

Для получения глиноземистого цемента используются способ спекания и способ плавления. Выбор способа в основном зависит от химического состава бокситов.

Способом спекания получают глиноземистый цемент во вращающихся или шахтных печах. Предварительно исходные сырьевые материалы высушивают, подвергают совместному тонкому измельчению, тщательно гомогенизируют и подают на обжиг в виде порошка или гранул. Сырьевая смесь спекается в печи в клинкер, который после охлаждения измельчается в тонкий порошок.

Ведение обжига клинкера глиноземистого цемента затрудняется недостаточным интервалом между температурами спекания и плавления сырьевой смеси, что вызывает образование колец, сваров и приваров. Кроме того, при спекании все нелетучие соединения, входящие в состав сырья, переходят в цемент. Поэтому получение глиноземистого цемента способом спекания требует чистого сырья с небольшим содержанием кремнезема (до 8 %) и оксидов железа (до 10 %). Несмотря на меньший расход топлива и более легкую размалываемость получаемого этим способом клинкера, способ спекания менее распространен.

Способ плавления при производстве глиноземистого цемента получил большее распространение, что объясняется сравнительно низкими температурами плавления сырьевых смесей (1380—1600 °С), возможностью использования грубомолотой сырьевой смеси с большим количеством примесей, которые частично при обжиге удаляются. Плавление шихты осуществляют в восстановительной и окислительной атмосфере в вагранках, доменных печах, электрических дуговых печах и конверторах.

В электродуговые печи загружают известь, прокаленныё до полного удаления воды бокситы, железную руду, металлический лом и кокс. При плавке оксиды железа и кремния, присутствующие в сырье, восстанавливаются и, реагируя между собой, образуют ферросилиций. В результате при использовании боксита, содержащего 15— 17 % SiO2, в цементе количество кремнезема снижается до 6—8 %. Так как плотность ферросилиция 6,5 г/см3, а расплавленного цемента 3 г/см3, расплав ферросилиция, осаждаясь, отделяется от расплава цемента. Сливая раздельно верхний и нижний слои расплава, получают два продукта — клинкер глиноземистого цемента и ферросилиций, используемый в металлургической промышленности. Плавка идет при 1800—2000 °С, апериодический выпуск расплава из печи в изложницы — при 1550—1650 °С. Охлажденный клинкер поступает на дробление и помол. Плавка в электрических печах обеспечивает получение глиноземистого цемента высокого качества, но требует большого расхода электроэнергии.

Способ доменной плавки чугуна и высокоглиноземистого шлака за рубежом называют «русским способом производства глиноземистого цемента». Сырьевую смесь, состоящую из железистого боксита, известняка, металлического лома и кокса, послойно загружают в печь. В результате доменного процесса получают из руды расплавленный чугун, а в виде шлака — расплав глиноземистого клинкера. Температура выпускаемого из домны расплава глиноземистого шлака 1600—1700 °С, а чугуна — 1450—1500 °С. Расплавленный глиноземистый шлак разливают в изложницы, где он медленно охлаждается и кристаллизуется. Количество получаемого чугуна примерно равно количеству клинкера. Бокситы, используемые при доменной плавке, могут содержать неограниченное количество Fe2O3, так как железо восстанавливается и переходит в состав чугуна. Однако SiO2 при доменной плавке восстанавливается в небольшой степени, поэтому требуются применение малокремнеземистого боксита и строгий контроль химического состава обжигаемой шихты. Обжиг в доменной печи очень экономичен, так как плавление сырья происходит за счет того же топлива, которое необходимо для выплавки чугуна.

Читайте так же:
Как сделать цементный раствор для заделки трещин

В процессе нагревания сырьевой шихты при 450— 1000 °С удаляется вода из бокситов, при 900 °С разлагается СаСОз, а при 1000—1100 °С происходит распад глинистых минералов. Взаимодействие между СаО и А12О3 начинается при 800—900 °С с образованием в качестве первичной фазы однокальциевого алюмината. При 1000— 1100 °С образуется СА2, а выше 1200 °С — С5А3 и С3А. Образование алюмоферритов происходит при температуре более 1200 °С.

Микроструктура и качество плавленого клинкера определяются режимом охлаждения. При медленном охлаждении кристаллы растут в благоприятных условиях и достигают больших размеров. Быстроохлажденный клинкер содержит значительное количество не успевшей закристаллизоваться стекловидной фазы. Характерная для глиноземистых цементов высокая начальная прочность проявляется только у цементов, изготовленных из равномерно закристаллизованных, т. е. медленно охлажденных клинкеров.

Плавленый глиноземистый клинкер отличается высокой твердостью, поэтому необходимо его предварительное двухстадийное дробление в мощных дробилках. Продукт дробления подвергают электромагнитной сепарации для отделения металлического железа и ферросилиция.

Помол дробленого глиноземистого клинкера производят в шаровых мельницах. Для интенсификации помола применяют углеродсодержащие вещества (угольную мелочь, сажу). Вследствие большого износа мелющих тел при помоле глиноземистого цемента необходимо чаще, чем при помоле портландцемента, производить догрузку и перегрузку мельниц. Расход электроэнергии на помол плавленых клинкеров примерно вдвое выше, чем на помол цементов, полученных способом спекания. Размол производят до остатка на сите № 008 не более 10 %.

Состав пуццоланового портландцемента

Материалы

Пуццолановый цемент – современный строительный материал, обладающий уникальными свойствами. Позволяет возводить устойчивые сооружения в местах с повышенной влажностью, обеспечивая сохранность от коррозии и долгий срок службы.

Пуццолановый портландцемент — что это

Главными составными частями материала являются специально обработанная глиняно-известковая смесь (цементный клинкер), измельченная гипсовая крошка и субстанции вулканического происхождения. Основное положительное свойство пуццоланового портландцемента – повышенная стойкость к воздействию влаги. В отличие от обычного цемента, использование материала в местах с наличием воды улучшает его характеристики и повышает прочность.

Плюсы и минусы, где применяют

Применение цемента

Использование материала в качестве основы для бетона улучшает его водостойкость – эффект достигается за счет характеристик состава пуццоланового портландцемента.

Строения, возведенные с его применением, обладают повышенной гибкостью, легко поддаются обработке, менее подвержены деформации и разрушению.

К недостаткам рассматриваемого материала стоит отнести:

  • увеличенную усадку;
  • низкие показатели воздухо- и морозостойкости, скорости конечного отвердевания;
  • повышенную потребность во влаге.

Стоит отметить, что достоинства материала перевешивают минусы, делая первостепенным при возведении сооружений с высокими требованиями по показателям стойкости. Использование гидростойкого портландцемента широко распространено при строительстве доков, тоннелей и подземных бункеров, плотин, мостовых опор, систем водоотведения и канализации, обустройстве речных портов. Характеристики материала обуславливают его применение при сооружении объектов, находящихся под постоянным воздействием грунтовых вод с повышенным содержанием минералов.

Интересный факт! Производство ряда разновидностей бетонов с помощью технологии пропаривания с применением пуццоланового портландцемента позволяет получить высокую устойчивость к коррозии, увеличить прочность конечного материала.

Состав, технические характеристики по ГОСТ

Цемент с пуццоланой

Главные параметры цемента с пуццоланой определяются Госстандартами. Они регулируют твердость материала, количественное соотношение ингредиентов в составе, ряд других характеристик. Это обусловлено необходимостью сохранения свойств на всем протяжении срока использования. При хранении нужно соблюдать меры предосторожности во избежание порчи материала, важно обеспечить комплексную защиту от примесей посторонних разновидностей цемента, воздействия воды и грязи.

Таблица 1. Главные параметры водостойкого портландцемента по ГОСТу.

ХарактеристикаЗначениеЕдиницы измерения
Усредненное значение плотности2800кг/м3
Объемный вес измельченного материала800-1000кг/м3
Объемный вес спрессованного материала1200-1600кг/м3
Твердость на изгибе6,8МПа
Твердость сжатия42,5-62,5Мпа
Срок достижения предельной прочности28 суток
Хранение в сухом местеВ течение полугода
Начальная стадия затвердевания¾ часа
Конечная стадия затвердеванияЧерез 12 часов
Тонкость помола с применением сита №00810 %

Госстандарт устанавливает количественное соотношение состава гидростойкого цемента, используемое при выработке. Преобладающий компонент – портландцементный клинкер в количестве 4/5 от общей массы, добавки – примерно 1/5 от объема сырья, присадки – в пределах 5 %. Соотношение добавок определяется требуемой степенью активности материала.

До 3 % от совокупного объема составляет гипс, он выступает в качестве регулятора скорости отвердения произведенного состава. В материал для придания конкретных свойств добавляются глина, обожженный сланец, топливная зола, кремнезем, прочие вещества. Они позволяют увеличить влаго- и теплостойкость, имеют низкую себестоимость. Активные добавки позволяют уменьшить итоговую цену продукта до 15 %.

Обратите внимание! Портландцемент с добавлением оксида кальция быстрее затвердевает, но менее водостойкий.

Пуццолана в цементе, что это за добавка

Цемент

Слово “пуццолана” образовано от итальянского pozzolana, применяется для обозначения мелкодисперсной смеси туфа, пемзы и вулканического пепла. Вещество в чистом состоянии не обладает вяжущими свойствами, проявляет подобную активность только в комплексных соединениях с известковыми растворами и бетонами.

Это интересно! Пуццолана с древности применялась при строительстве акведуков, бань, пирсов и рвов для водоотведения, первые упоминания относятся к эпохе Древнего Рима и Византии. Главное месторождение вулканических пород в те времена располагалось в городе Поццуоли.

Влияние пуццолановых добавок на свойства бетона

Дополнительные присадки в портландцементе позволяют получить водостойкий материал для решения определенных строительных задач. Цемент с присутствием аморфного диоксида кремния, белой сажи и микрокремнезема имеет повышенное содержание гелеобразных фаз, гидросиликаты кальция позволяют повысить армированность структуры и снизить деформацию и усадку цементного камня при схватывании. Белая сажа и аморфный диоксид кремния показывают большую эффективность (увеличение порядка 1%) при добавлении в портландцемент по сравнению с микрокремнеземом, способствуют улучшению показателей водонепроницаемости, прочности и прочих параметров материала.

Читайте так же:
Насосы для перекачивания цемента

Отличия пуццоланового портландцемента и простого цемента

Главные различия рассматриваемого материала от обычного – меньший объемный и удельный вес. Пуццолановые присадки улучшают показатели рыхлости конечного продукта по отношению к прочим видам цемента, удельная плотность в 2,8 г/см3 позволяет получить большее итоговое количество готового раствора на выходе.

Гидростойкий цемент более светлого оттенка, чем обычный, смесь при его присутствии более вязкой консистенции, что увеличивает расход материала примерно на 10 %. Окончательное схватывание пуццоланового портландцемента занимает больше времени, в отличие от распространенных разновидностей. Процесс затвердевания пуццоланового портландцемента отличается уменьшенным тепловыделением, что важно при строительстве крупных объектов в летний период. Материал имеет повышенную стойкость к соединениям группы сульфатов.

Обратите внимание! Рассматриваемый тип цемента классифицируется по маркам, всего существует 5 видов материала, различающихся по параметрам прочности (200, 250, 300, 400, 500).

Технология изготовления гидростойкого цемента

Приготовление цемента

Производство материала промышленным методом осуществляется мокрым или сухим способом, выбор определяется применяемым методом получения портландцементного клинкера. Основное сырье для выработки – известково-глиняная смесь в пропорции 3:1.

Мокрый и сухой способы производства

Первая технология основана на заливке глиняно-известковой смеси водой и выдержке в течение определенного времени. Состав перемешивается до максимально однородной консистенции, определяется количественное соотношение содержания элементов и корректировка параметров с целью задания конкретных свойств гидростойкого портландцемента, производится обжиг в доменной печи. Результат процесса – получение гранул диаметром от 5 до 20 миллиметров, впоследствии они соединяются с другими компонентами портландцемента после измельчения.

Сухой метод изготовления предполагает отправку составляющих в сушильный барабан на начальном этапе производства. После этого смесь подвергается дроблению на мелкие части, данную операцию можно осуществить до и после смешения компонентов.

При производстве водостойкого цемента допускается использование сушильно-помольных машин – это делает возможным одновременное проведение дробления и сушки ингредиентов. Часто данные устройства применяют на масштабных стройках – это обеспечивает изменение параметров смеси непосредственно на месте и получение необходимых свойств под определенные задачи при возведении гидростойких сооружений.

Контактный метод получения серной кислоты

Среди минеральных кислот, производимых химической промышленностью, серная кислота по объему производства и потребления занимает первое место. Объясняется это и тем, что она самая дешевая из всех кислот, а также ее свойствами. Серная кислота не дымит, в концентрированном виде не разрушает черные металлы, в то же время является одной из самых сильных кислот, в широком диапазоне температур (от — 40. -20 до 260-336,5 о С) находится в жидком состоянии.

Области применения серной кислоты чрезвычайно обширны. Существенная ее часть используется как полупродукт в различных отраслях химической промышленности, прежде всего для получения минеральных удобрений, а также солей, кислот, взрывчатых веществ. Серная кислота применяется и при производстве красителей, химических волокон, в металлургической, текстильной, пищевой промышленности и т. д.

Сырье для серной кислоты и методы ее получения

Исходными реагентами для получения серной кислоты могут быть элементная сера и серосодержащие соединения, из которых можно получить либо серу, либо диоксид серы. Такими соединениями являются сульфиды железа, сульфиды цветных металлов (меди, цинка и др.), сероводород и ряд других сернистых соединений. Традиционно основными источниками сырья являются сера и железный (серный) колчедан. Около половины серной кислоты получают из серы, треть — из колчедана. Значительное место в сырьевом балансе занимают отходящие газы цветной металлургии, содержащие диоксид серы.

В целях защиты окружающей среды во всем мире принимаются меры по использованию отходов промышленности, содержащих серу.

В то же время отходящие газы — наиболее дешевое сырье, низки оптовые цены и на колчедан, наиболее же дорогостоящим сырьем является сера. Следовательно, для того чтобы производство серной кислоты из серы было экономически целесообразно, должна быть разработана схема, в которой стоимость ее переработки будет существенно ниже стоимости переработки колчедана или отходящих газов.

Получение серной кислоты включает несколько этапов.

Первым этапом является получение диоксида серы окислением (обжигом) серосодержащего сырья.

Следующий этап — превращение оксида серы (IV) в оксид серы (VI). Этот окислительный процесс характеризуется очень высоким значением энергии активации, для понижения которой необходимо, как правило, применение катализаторов. В зависимости от того, как осуществляется процесс окисления SО2 в SО3, различают два основных метода получения серной кислоты.

В контактном методе получения серной кислоты процесс окисления SО2 и SО3 проводят на твердых катализаторах.

Триоксид серы переводят в серную кислоту на последней стадии процесса — абсорбции триоксида серы, которую упрощенно можно представить уравнением реакции

Контактный метод получения серной кислоты

Рассмотрим процесс получения серной кислоты контактным методом из серного (железного) колчедана. Первой стадией процесса является окисление серного колчедана с получением обжигового газа, содержащего диоксид серы.

Обжиг колчедана (пирита) является сложным физико-химическим процессом и включает в себя ряд последовательно или одновременно протекающих реакций:

Читайте так же:
Вяжущие цементные технические условия

Особые виды бетона. Бетон гидротехнический, жаростойкий, кислотоупорный, серный

Сера – один из самых распространенных материалов на Земле. Поэтому вопрос использования ее в строительстве был предрешен. Надо было только придумать как. Особенно актуальным этот вопрос стал в связи с бурным развитием нефтехимической отрасли, где сера является отходом производства и ее нужно как-то утилизировать. И придумали. Использовать серу в качестве связующего вещества при производстве строительных материалов. Вяжущие свойства серы были известны давно, еще в XVII веке, а может и раньше. Тогда с ее помощью соединяли металл с камнем при производстве корабельных якорей. А с 70-х годов прошлого века сначала в США, а потом и в СССР сера стала активно изучаться на предмет применения ее в строительстве. Результаты получились весьма обнадеживающие.

Преимущества и недостатки серного бетона

Серобетон превзошел своего цементного собрата почти по всем показателям (за исключением термостойкости). Судите сами: по влагостойкости — на 20%, по кислотостойкости — в 3,5 раза, по морозоустойчивости – в 6 раз, по стойкости к истиранию – в 6 раз, по прочности на сжатие – в 2-3 раза, по прочности на изгиб – в 2 раза, по прочности на растяжение на 20…100%, по скорости набора прочности – в 80 раз. Добавим сюда еще, что формовка серобетона возможна и при отрицательных температурах. К недостаткам, помимо низкой стойкости к высоким температурам, можно отнести необходимость поддержания температуры раствора выше 140 грС (сера — термопластичный материал) и жесткие требования к точности соблюдения технологического процесса.

Состав серного бетона

Наполнителями для серобетона могут служить те же материалы, что и для цементного бетона: песок, гравий, щебенка, шлаки, керамзит, аглопорит и т.п. Исключение составляют материалы, боящиеся высокой температуры – пенополистирол, например. Серный цемент представляет из себя гранулы модифицированной серы, которую, для смешивания с наполнителями, нужно расплавить при температуре выше 140 грС. Наполнители также предварительно нагревают, чтобы они не остудили серу в момент смешивания. Вода не используется (какая уж тут вода при 140 грС), поэтому пористость серного бетона неразличима даже под микроскопом. Для повышения прочности используют стекловолоконную фибру в количестве до 5% от общей массы или ее аналоги.

Серный бетон – инновация в сфере жилого и дорожного строительства

Одним из самых распространенных материалов на земле является сера. Нет ничего удивительного в том, что человек придумал, какое применение найти этому веществу в строительной сфере. С развитием нефтяной и химической отраслей, в которой сера является одним из обязательных отходов производства, этот вопрос стал еще более активно обсуждаться. Следовало только придумать способ, как с пользой утилизировать серу? Конечно же, использовать ее в производстве стройматериалов.

Начиная с 17-го столетия, когда с помощью серы люди соединяли металл с камнем (изготовление корабельных якорей, к примеру), стали известны вяжущие свойства этого вещества. В строительстве же серу начали применять в семидесятых годах прошлого столетия все промышленные страны (США, СССР и т.д.). В этот период вместе с ростом обширной сырьевой базы возросла потребность в долговечных и химически стойких строительных материалах. К тому же, нельзя не учитывать тот факт, что использование серосодержащих отходов, серы или серного вяжущего в строительстве зданий и обустройстве дорог выгодно экономически.

Состав серобетона и его свойства

В качестве наполнителей для серобетона используются те же материалы, что и для обычного (на основе цемента). Это гравий, песок, щебень, керамзит, доменный шлак и т.д. Конечно же, за исключением тех материалов, которые не способны выдержать высокую температуру (например, пенополистирол). Ведь серу непосредственно перед соединением с наполнителем нагревают до температуры свыше 140 градусов. А чтоб в момент смешивания сера не остыла, наполнители также нагревают. Естественно, из-за высокой температуры приготовления смеси вода для приготовления серобетона не используется вообще.

Нагреваясь, сера выполняет роль жидкого составляющего. Наполнитель в составе серобетона после остывания представляет собой структурообразующую основу, на поверхности которой происходит кристаллизация серы. Твердение смеси происходит в процессе ее остывания, все составляющие серного бетона превращаются в монолитную структуру.

Конструкция, изготовленная из смеси легкого серобетона обладает высокими теплотехническими показателями, устойчива к химическому воздействию солей, кислот и масел. Что касается прочности, сцепление арматуры с серным бетоном не ниже прочности сцепления с обычным цементным. Иногда в целях повышения прочности в состав раствора могут добавлять стекловолокнистую фибру или ее аналоги (в общем количестве составляющего до 5% от общей массы смеси). Благодаря низкому радиоактивному фону, композиции с серой используются сегодня в строительстве различных объектов специального назначения. Высокие эстетические и архитектурно-выразительные качества позволяют использовать конструкции из серобетона в жилищном строительстве. Кстати, одним из перспективных направлений использования серных композиций сегодня является также производство труб различного назначения.

Достоинства и недостатки бетонов с серой

Что касается качественных показателей, серобетон превосходит цементный практически во всем (исключение – термостойкость). Сравнивая эти два материала, можно сказать, что бетон с серой превосходит своего цементного аналога по влагостойкости на 20%, более устойчив к низким температурам (в 6 раз!), к воздействию кислот (почти в 4 раза), к стиранию (в 6 раз). Что касается прочности, бетон с серой имеет более высокий показатель на сжатие (примерно в 2-3 раза), на изгиб (в два раза), на растяжение (от 20% до 100%)! Кстати, серобетон можно формовать при температуре ниже 0 градусов.

Кроме неустойчивости в условиях высокой температуры, к недостаткам бетона с серой, пожалуй, следует отнести необходимость поддерживать температуру раствора свыше 140 градусов в процессе замеса. И естественно, весь процесс приготовления смеси, его формовка должны строго контролироваться. .

Читайте так же:
Марки цемента по госту 2016

Использование серы в дорожном строительстве

Использование серы в дорожном строительстве (производство сероасфальтобетона) является особым направлением. Ведь сама по себе асфальтобетонная смесь с серой обладает большей подвижностью, что значительно улучшает возможность ее укладки в покрытие.

Серобитумная композиция способна снизить расход битума до 35%. За счет более низкой вязкости серы при температуре 150 градусов (если сравнивать с битумом), смесь не только удобнее укладывать, но и за счет повышения термостойкости можно повысить качество самого дорожного покрытия и срок его эксплуатации. Асфальтобетонная композиция с серой пригодна и для ремонта дорог. Сегодня данная технология с успехом используется для изготовления и ремонта таких конструкций, как защитные дорожные или указательные столбики, лотки, защита и укрепление откосов, разные плиты и т.д.

Развитие производства серобетона и его значение

Какие проблемы может решить развитие производства серных композиций в нашей стране? Помимо технико-экономических, в последнее время весьма актуален вопрос экологии. И это касается не только нашей страны, но и всего мира. Немало усилий и ресурсов направляется на то, чтобы регулярно разрабатывались новые композиционные материалы, которые бы обеспечили надежную защиту от фонового радиоактивного излучения. И нет ничего удивительного уже в том, что сегодня на основе серобетонных композиций сооружаются объекты спецназначения (к примеру, подземные лаборатории, где проводятся исследования термоядерных процессов, изучаются свойства нейтрино и т.п.).

Сера давно и стабильно применяется в разных отраслях промышленности и в сельском хозяйстве. Но ее физические и химические свойства позволяют расширить область ее применения и удачно использовать серу в монолитном жилом строительстве.

Гидротехнический бетон

Гидротехнический бетон используется для конструкций, расположенных в воде или периодически соприкасающихся с водой, поэтому он должен обладать свойствами, необходимыми для длительной нормальной службы этих конструкций в данных эксплуатационных и климатических условиях. Гидротехнический бетон должен удовлетворять требованиям по долговечности, морозостойкости, прочности, водостойкости, тепловыделению при твердении, водонепроницаемости, усадке и трещиностойкости и иметь минимальную стоимость. Противоречивые на первый взгляд требования низкой стоимости и высокого качества возможно выполнить, если выделить внутреннюю зону и наружную зону массивного сооружения, подвергающуюся непосредственному влиянию среды. Бетон наружной зоны в зависимости от расположения в сооружении по отношению к уровню воды делят на переменного уровня воды, бетон подводный (находящийся постоянно в воде) и надводный, который находится выше уровня воды. В самых суровых и агрессивных условиях бетон, находящийся в области переменного уровня воды, неоднократно оттаивает и замерзает, находясь все время во влажном состоянии. Это же относится к бетону морских сооружений (причалов, пирсов, молов и т.д.), водосливной грани плотин, градирен, служащих для охлаждения оборотной воды на тепловых предприятиях металлургической и химической промышленности, электростанциях. Этот бетон обязан характеризоваться высокой морозостойкостью и плотностью.
Бетон внутренней зоны массивных конструкций защищен наружным бетоном от воздействия среды. Главное требование к этому бетону — минимальная величина тепловыделения при твердении, так как неравномерный разогрев массива может образовать температурные трещины. Малое тепловыделение имеет шлакопортландцемент, поэтому его и применяют для внутримассивного бетона наряду с пуццолановым портландцементом. Требования к физико-механическим свойствам бетона внутренней зоны не столь высоки: марки по прочности М100, М150, по водонепроницаемости W2, W4. Марку бетона по морозостойкости определяют в зависимости числа расчетных циклов попеременного замораживания и оттаивания в течение года и от климатических условий. Установлены следующие марки гидротехнического бетона по морозостойкости: F100, F150, F200, F300, F400, F500. Водопоглощение гидротехнического бетона характеризуется величиной капиллярной всасываемости при погружении в воду образцов 28-суточного возраста, высушенных до постоянной массы при температуре 105°С. Водопоглощение бетона зоны переменного уровня воды не должно превышать 5% от массы высушенных образцов, для бетонов других зон — не более 7%. Линейная усадка бетона при относительной влажности воздуха 60% и температуре 18°С в возрасте 28 суток не превышает 0,3 мм/м, в возрасте 180 суток — 0,7 мм/м. Предельно допустимые величины набухания установлены: в возрасте 28 сут — 0,1 мм/м, 180 сут -0,3 мм/м (по сравнению с высушенными до постоянной массы при 60°С эталонными образцами).

СПОСОБ ПОЛУЧЕНИЯ БАЗОВОГО СЕРНОГО ЦЕМЕНТА Российский патент 2008 года по МПК C04B12/00 C04B28/36

Изобретение относится к области стройиндустрии и может использоваться в качестве вяжущего материала при изготовлении строительных изделий и ведении ремонтно-восстановительных работ, где требуется устойчивость в агрессивной среде и высокая морозостойкость.

За последние десятилетия проведено значительное число работ (1), адресованных на освоение серы в качестве вяжущего материала, получено много патентов (2), тем не менее, успешно работающих или осваивающих эту технологию предприятий не наблюдается, видимо, от того, что нет унификации, для каждого изделия свой рецепт, отдельная технология приготовления.

Цель данного изобретения — создать базовый серный цемент, позволяющий унифицировать технологический процесс, расширить сферу применения серы в стройиндустрии в качестве универсального вяжущего материала.

Основой для технического решения данной проблемы является свойство серы переходить в модифицированное состояние при перетирании или перемалывании серы с минеральным наполнителем: базовое соотношение 1:1, степень измельчения 2000 см2/г.

Базовое значение измельчения 2000 см2/г взято исходя из оптимального, практически достаточного предела, т.к. при дальнейшем измельчении эффективность производства резко снижается, например, при помоле до 3000 см2/г прочность изделия повышается на 10%, а производительность агрегата снижается вдвое.

Процесс получения базового серного цемента следующий: через дозаторы загружают в шаровую или вибрационную мельницу минеральный наполнитель одновременно с серой в заданном соотношении и перемалывают до достижения удельной поверхности в пределах не менее 2000 см2/г. В качестве наполнителя берут кварцевый песок или каменную муку.

Читайте так же:
Врач который закачивал цемент

Такой цемент может применяться как в качестве термопластических мастик для получения глянцевых поверхностей, так и с заполнителем, в качестве вяжущего, при формовании серобетона. Прочность изделия зависит от свойств заполнителя, например, с обычным ПГС (песчано-гравийная смесь) в пределах 60 мПа/см2.

Кроме вышесказанного, до минимума упрощается процесс приготовления серобетона, в качестве заполнителя может входить любой состав в зависимости от технических требований, в том числе отходы производства, которые требуют герметичного захоронения.

Предлагаемый серный цемент можно дорабатывать с целью получения особых требуемых свойств, например пластифицировать тем или иным модификатором. Немаловажное преимущество этой технологии — не требуется разработка специального оборудования — производство ведется на типовых шаровых или вибрационных мельницах, в типовых изделиях не требуются дорогостоящие модифицированные добавки, предлагаемый цемент не боится влаги.

1. а) Журнал «Строительные материалы» №1 — 2000 г. «Серобетон на основе местного сырья и промышленных отходов Норильского региона».

Портландцемент

Портландцемент (англ.  Portland cement ) — гидравлическое вяжущее вещество, получаемое путём совместного помола цементного клинкера, гипса и добавок, в составе которого преобладают силикаты кальция (70-80 %). Это вид цемента, наиболее широко применяемый во всех странах.

Впервые получен англичанином Джозефом Аспдином (Joseph Aspdin) в 1824 году; 21 октября 1824 года он запатентовал портлендский цемент.
Название получил по имени острова Портленд в Англии, так как получаемый с его добавками искусственный камень (бетон) по цвету похож на добываемый там природный камень.

Основой портландцемента является силикат (алит и белит).

Содержание

Процесс производства [ править | править код ]

Портландцемент получают тонким измельчением клинкера и гипса. Клинкер — продукт равномерного обжига до спекания однородной сырьевой смеси, состоящей из известняка и глины определённого состава, обеспечивающего преобладание силикатов кальция (3СаО∙SiO2 и 2СаО∙SiO2 70-80 %).

Самые распространённые методы производства портландцемента — так называемые «сухой» и «мокрый». Всё зависит от того, каким способом смешивается сырьевая смесь — в виде водных растворов или в виде сухих смесей.

При измельчении клинкера вводят добавки: 1,5…3,5 % гипса СaSO4∙2H2O (в перерасчёте на ангидрид серной кислоты SO3) для регулирования сроков схватывания, до 15 % активных минеральных добавок — для улучшения некоторых свойств и снижения стоимости цемента.

Сырьём для производства портландцемента служат смеси, состоящие из 75…78 % известняка (мела, ракушечника, известнякового туфа, мрамора) и 22…25 % глин (глинистых сланцев, суглинков) либо известняковые мергели, использование которых упрощает технологию. Для получения требуемого химического состава сырья используют корректирующие добавки: пиритные огарки, колошниковую пыль, бокситы, пески, опоки, трепелы.

При мокром способе производства уменьшается расход электроэнергии на измельчение сырьевых материалов, облегчается транспортирование и перемешивание сырьевой смеси, выше гомогенность шлама и качество цемента, однако расход топлива на обжиг и сушку на 30-40 % больше чем при сухом способе.

Обжиг сырьевой смеси проводится при температуре 1470 °C в течение 2—4 часов в длинных вращающихся печах (3,6×127 м, 4×150 м и 4,5×170 м) с внутренними теплообменными устройствами, для упрощения синтеза необходимых минералов цементного клинкера. В обжигаемом материале происходят сложные физико-химические процессы. Вращающуюся печь мокрого способа условно можно поделить на зоны:

  • сушки (температура материала 100…200 °C — здесь происходит частичное испарение воды);
  • подогрева (200…650 °C — выгорают органические примеси и начинаются процессы дегидратации и разложения глинистого компонента). Например, разложение каолинита происходит по следующей формуле: Al2O3∙2SiO2∙2H2O → Al2O3∙2SiO2 + 2H2O; далее при температурах 600…1000 °C происходит распад алюмосиликатов на оксиды и метапродукты.
  • декарбонизации (900…1200 °C). В этой зоне происходит декарбонизация известнякового компонента: СаСО3 → СаО + СО2, одновременно продолжается распад глинистых минералов на оксиды. В результате взаимодействия основных (СаО, MgO) и кислотных оксидов (Al2O3, SiO2) в этой же зоне начинаются процессы твердофазового синтеза новых соединений (СаО∙ Al2O3 — сокращённая запись СА, который при более высоких температурах реагирует с СаО и в конце жидкофазового синтеза образуется С3А), протекающих ступенчато;
  • экзотермических реакций (1200…1350 °C). В этой зоне завершается процесс твёрдофазового спекания материалов, здесь полностью завершается процесс образования таких минералов как С3А, С4АF (F — Fe2O3) и C2S (S — SiO2) — 3 из 4-х основных минералов клинкера;
  • спекания (1300→1470→1300 °C). В этой зоне происходит частичное плавление материала, в расплав переходят клинкерные минералы кроме C2S, который взаимодействуя с оставшимся в расплаве СаО образует минерал АЛИТ (С3S);
  • охлаждения (1300…1000 °C). Здесь температура медленно понижается. Часть жидкой фазы кристаллизуется с выделением кристаллов клинкерных минералов, а часть застывает в виде стекла.

Узнать данный вид цемента можно по внешнему виду — это зеленовато-серый порошок. Как и все цементы, если к нему добавить воду, он при высыхании принимает камнеобразное состояние и не имеет существенных отличий по своему составу и физико-химическим свойствам от обычного цемента.

ПДК в воздухе (согласно ГОСТ 12.1.005-88): 6 мг/м3

Существуют следующие виды портландцемента:

  • быстротвердеющий;
  • нормальнотвердеющий;
  • пластифицированный; ;
  • сульфатостойкий;
  • дорожный;
  • белый и цветной;
  • с умеренной экзотермией;
  • с поверхностноактивными органическими добавками.

Объём производства [ править | править код ]

По данным ROIF Expert, в 2019 году в России было произведено 57,3 млн. тонн портландцемента. По сравнению с 2018 годом продажи портландцемента в России выросли на 29,7 млрд рублей. [2] Основной объём потребляемой в России продукции производится внутри страны. Доля импорта в потреблении в последние годы колеблется в районе 2,5-3,5%. [3]

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector