88889.ru

Отделка плиткой и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Силикатный кирпич и силикатобетонные изделия

Силикатный кирпич и силикатобетонные изделия.

Силикатный кирпич – искусственный безобжиговый стеновой материал, изготовляемый из смеси кварцевого песка и гашеной извести прессованием с последующим затвердеванием в автоклаве под действием пара высокого давления и температуры.

Современное производство силикатного кирпича состоит в следующем. Сырьевую смесь, в состав которой входит 92 – 94% песка, 8 – 6% молотой негашёной извести и 7 – 9% воды, от массы сырья тщательно перемешивают и выдерживают до полного гашения извести. Затем из этой смеси под большим давлением (15-20 МПа) прессуют кирпич, который укладывают на вагонетки и направляют по рельсам для твердения в автоклавы.

В автоклаве в атмосфере насыщенного пара при давлении 0,8 МПа и температуре 175 о С кирпич твердеет 8-14 ч. Из автоклава выгружают почти готовый кирпич, который выдерживают 10-15 сут. для карбонизации непрореагировавшей извести углекислым газом воздуха, в результате чего повышаются водостойкость и прочность кирпича.

Выпускают одинарный (250х120х65мм), утолщённый силикатный кирпич (250х120х88), и силикатный камень (250х120х138мм). Одинарный кирпич может быть полнотелым, пустотелым. Утолщённый кирпич и силикатный камень выпускают только пустотелыми.

Цвет кирпича – от молочно-белого до светло-серого. Выпускают также кирпич цветной, окрашенный в массе или по лицевым поверхностям щелочестойкими пигментами в голубой, зеленоватый, жёлтый и другие светлые цвета.

Для силикатного кирпича и камней установлены марки: в зависимости от предела прочности при сжатии – 250, 200, 150, 125, 100; по морозостойкости – 50, 35, 25, и 15.

Рис. 1 Схема производства силикатного кирпича.

Водопоглощение лицевого силикатного кирпича не превышает 14%, а рядового – 16%. Марки по Мрз–ти для лицевого кирпича F25, F35, F50, а рядового – F15. Силикатный кирпич применяют наравне с керамическим для кладки стен надземных частей зданий. Вследствие недостаточной водостойкости его нельзя использовать для фундаментов и цоколей зданий ниже гидроизоляционного слоя. Не допускается применять его также для зданий с мокрым режимом эксплуатации (бани, прачечные) без специальных мер защиты стен от увлажнения, а также в условиях воздействия высоких температур (кладка печей, труб и т.п.).

Так как при высокой температуре дегидратируется , разлагается и гидросиликаты кальция, а зёрна кварцевого песка при температуре 600 о С расширяются и вызывают растрескивание кирпича. (рис. 1).

Силикатные бетоны – получают в результате автоклавного твердения рационально подобранной смеси известково-кремнезёмистого вяжущего и заполнителей.

Силикатные бетоны классифицируют по плотности, максимальной крупности, виду заполнителей, структуре, пластичности смеси и области применения. Могут быть тяжёлыми бетонами (заполнители: песок, щебень и известково-кремнезёмистое вяжущие; лёгкими бетонами (заполнители пористые: керамзит, вспученный перлит, аглопорит и др.) и ячеистыми (пеносиликаты и газосиликаты).

В силикатном бетоне применяют известково – кремнеземистое вяжущее, в состав которого входят воздушная известь и тонкомолотый кварцевый песок (взамен песка применяют золу, молотый доменный шлак). Прочность известково – кремнезёмистого вяжущего зависит от активности извести, соотношения тонкости измельчения песка и параметров автоклавной обработки (температуры и давления насыщенного пара, длительности автоклавного твердения). Оптимальным будет такое соотношение такая тонкость помола песка, при которых вся будет связана в низко основные гидросиликаты кальция рис. 2

Влияние тонкости помола и содержания кварцевого песка на прочность силикатного бетона:

1 – удельная поверхность молотого песка 1500 см 2 /г;

2 – то же, 2500 см 2 /г;

3 – то же, 4500 см 2 / г

Изготовление бетонных и железобетонных изделий включает приготовление известково – кремнезёмистого вяжущего, приготовление и гомогенизацию силикатнобетонной смеси, формование изделий, автоклавную обработку. В процессе автоклавизации между всеми компонентами бетона имеют место химические взаимодействия.

Тяжёлый силикатный бетон имеет плотность 1800 – 2500 кг/м 3 , прочность 15 – 80 МПа. Применяют для изготовления сборных бетонных и железобетонных конструкций, в том числе предварительно напряжённых.

Преимущественно применяют мелкозернистые силикатные бетоны. Технология производства силикатобетонных изделий заключается в приготовлении известково-кремнезёмистого вяжущего путём совместного или раздельного измельчения песка и извести, дозирования основных компонентов, перемешивания бетонной смеси, формования изделий и их автоклавной обработки.

По основным строительным свойствам силикатные бетоны близки к цементным. Для них справедливы и основные зависимости свойств от технологических параметров, установленные для цементных бетонов.

В настоящее время из плотного автоклавного бетона изготовляют, в основном несущие панели внутренних стен и крупные блоки (для наружных и внутренних стен), а также панели перекрытий. Организован выпуск панелей размером с комнату.

Стойкость силикатных бетонов в воде ниже, чем цементных. Для повышения водостойкости этого материала применяют различные способы, главными из которых являются: дополнительная обработка (пропитка битумом, карбонация, покрытие кремнийорганическими водоотталкивающими соединениями); создание водостойкости гидросиликатной связи из малорастворимых силикатов кальция введением добавки доменного шлака и т. д.

1.3 Основы технологии производства силикатного кирпича

Производство силикатного кирпича отличается от производства керамического следующими технико-экономическими показателями:

— относительная простота технологического процесса производства;

— высокий уровень механизации и автоматизации производства;

— меньший расход энергоресурсов;

— длительность технологического процесса изготовления кирпича по сравнению с керамическим от 5 до 10 раз;

— себестоимость силикатного кирпича в 2 раза ниже по сравнению с керамическим.

Производство силикатного кирпича состоит из следующих технологических переделов:

1) складирование и подготовка сырьевых компонентов;

2) получение известково-кремнеземистого вяжущего (ИКВ);

3) приготовление силикатной смеси и гашение извести в ней;

4) формование кирпича-сырца;

5) автоклавная обработка кирпича;

6) упаковка и складирование готовой продукции.

Кварцевый песок складируется на складах бункерного типа. Запас песка должен обеспечивать бесперебойную работу предприятия в течение 2 часов.

Подготовка песка заключается в оттаивании мерзлых песков в зимний период и выделении посторонних включений в виде крупных кусков щебня и гальки. Для снижения пористости смеси желательно производить шихтовку песка, используя пески различной крупности. Шихтовка песка осуществляется в приемных отделениях (складах), оборудованных бункерами, ленточными питателями и смесителями.

Подготовка комовой извести заключается в дроблении ее кусков, причем куски размером менее 80 мм подвергают одностадийному дроблению в молотковых дробилках. Куски крупнее 80 мм дробятся в две стадии: в щековых, а затем в молотковых дробилках. После этого известь дозируется в мельнице для совместного помола.

Для получения ИКВ перед помолом извести и песка их смешивают в определенном соотношении в лопастной мельнице, затем смесь выдерживают в расходных бункерах перед мельницей.

Негашеная дробленая известь и песок карьерной влажности 5 – 7 % смешиваются в соотношении ИКВ=И:П=1:1 – 2:1. Часть влаги, находящейся в песке (примерно 50 %), расходуется на гашение извести, остальная влага испаряется за счет прохождения экзотермической реакции гидратации извести.

Не рекомендуется смешивать известь и песок одновременно с помолом в мельницах, так как испаряющаяся влага, как правило, конденсируется в рукавных фильтрах и выводит их из строя.

Затем смесь поступает на совместный сухой помол в шаровых мельницах непрерывного действия. Удельная поверхность ИКВ составляет 400 – 450 м 2 /кг.

Читайте так же:
Кирпич силикатный по стране

Приготовление силикатной смеси включает дозирование ИКВ и оставшегося песка, смешивание их, увлажнение смеси до необходимой влажности и гашение извести в смеси.

ИКВ и песок дозируют по массе, предварительно расчетным путем установив их соотношение с учетом активности (5 – 8 %) и влажности смеси (4 – 8 %).

Первичное перемешивание смеси осуществляется в тихоходных или быстроходных двухвальных смесителях периодического или непрерывного действия. Смесители снабжены перфорированными трубками или специальными распылительными устройствами для подачи воды и острого насыщенного пара, необходимого для получения оптимальной влажности и улучшения качества силикатной смеси. После смешивания ИКВ и песка силикатную смесь из смесителей подают в гасильные аппараты для гашения извести.

Процесс гашения извести протекает по следующей химической реакции:

, (1)

в результате которой выделяется примерно Q=65 кДж/моль.

Гашение извести в смеси происходит в аппаратах периодического (гасильных барабанах) или непрерывного действия (в силосах-реакторах). В гасильных барабанах известь гасится в течение 50 – 60 мин и при повышенном давлении насыщенного пара – в течение 30 – 35 мин.

На предприятиях, как правило, используют силосы-реакторы, позволяющие производить гашение извести и одновременно ее усреднение за счет специальных перемешивающих лопастей, установленных в силосах-реакторах.

Кроме этого, силосы-реакторы являются бункерами промежуточного хранения, обеспечивающими постоянное поступление смеси в прессы.

Гашение извести в силосах-реакторах производится от 1 до 4 часов.

Интенсифицировать время гашения извести можно следующим образом. Например, можно гасить известь при повышенном давлении насыщенного пара pиз=0,7 МПа и при повышении температуры до t=130 –

150 ºС. Длительность гашения при этом составляет в среднем 30 мин. Также применяется способ повышения удельной поверхности ИКВ до 450 –

500 м 2 /кг. Можно также вводить в смесь хлористые соли.

После гашения производят повторное перемешивание смеси для более тщательного усреднения и разрушения агрегированных частиц извести (комочков).

Для гарантии полной гидратации извести при перемешивании в лопастных смесителях вводят дополнительно некоторое количество воды или острого пара для получения оптимальной влажности формовочной смеси.

В результате данной операции

— перераспределяется влага между зернами смеси;

— улучшается формуемость сырца и увеличивается его прочность;

— повышается прочность и морозостойкость кирпича.

Перемешивание происходит в лопастных или стержневых смесителях.

Формование кирпича-сырца осуществляется на гидравлических прессах.

Силикатная смесь засыпается в гнезда станины пресса с избытком. Например, для получения кирпича толщиной 88 мм в гнездо засыпается слой смеси толщиной 130 – 140 мм.

Одновременно прессуются два кирпича под давлением pуд=20 –

40 МПа с целью получения кирпича-сырца прочностью не менее 0,3 МПа.

На прочность оказывают влияние следующие факторы:

1) формовочное давление (с увеличением давления до 40 МПа коэффициент уплотнения сырца стремится к единице и прочность увеличивается на 35 – 50 %);

2) длительность прессования (положительно влияет на прочность сырца при более малых давлениях);

3) содержание в смеси тонкодисперсной составляющей (с увеличением удельной поверхности до 550 – 600 м 2 /кг получается сырец прочностью 0,5 – 0,6 МПа).

После прессования автоматом-укладчиком кирпич-сырец по 2 шт. снимается со стана пресса и укладывается на накопитель. Затем автомат-укладчик перекладывает кирпич-сырец на автоклавные вагонетки, которые передвигаются в автоматическом режиме по рельсам и через систему передаточных мостов заполняют автоклавы.

Автоклавная обработка – завершающий этап получения кирпича, в процессе которого формируются все основные свойства силикатного кирпича.

Применяются тупиковые и проходные автоклавы, выбор которых обуславливается технико-экономическими показателями, мощностью завода и принятой технологией. Запаривание кирпича происходит в среде насыщенного пара при температуре t=174,5 – 200 ºС и избыточном давлении pиз=0,8 –

1,2 МПа, а также при влажности 100 %.

Время запаривания устанавливается экспериментально непосредственно на предприятии с учетом требуемых свойств кирпича, объема наполнения вагонеток, способа укладки кирпича на вагонетки.

Роль пара высокого давления и температуры состоит в создании и сохранении в порах сырца жидкой фазы – влаги, при участии которой происходит растворение гидроксида кальция и песка и их химическое взаимодействие, приводящее к образованию и кристаллизации гидросиликатов кальция различной основности и в конечном итоге к образованию тоберморита, который формирует все необходимые строительно-эксплуатационные свойства кирпича.

Образование гидросиликатов кальция происходит по следующей реакции:

. (2)

Процесс автоклавной обработки можно условно разделить на три периода.

1) Первый период начинается с момента впуска горячего пара до момента выравнивания температуры теплоносителя и самих изделий, давление сохраняется на уровне атмосферного до достижения t=100 ºС.

Влажность сырца возрастает и происходит стадия пропаривания сырца. Этот период длится от 0,5 до 0,75 ч. В этот период начинается растворение Ca(OH)2 и в небольшом количестве SiO2 и их взаимодействие с образованием высокоосновных гидросиликатов кальция – C2SiH2, которые придают кирпичу высокую морозостойкость (до 100 циклов), но низкую прочность (до 1 МПа).

2) Период изотермической выдержки при максимальной температуре и давлении с сохранением 100 %-ной влажности.

В первые 1,5 ч продолжается поступление конденсата от поверхностных слоев кирпича к центральной части кирпича. Концентрация свободной растворенной извести уменьшается, и продолжается более интенсивное растворение SiO2; в результате химической реакции образуются низкоосновные гидросиликаты – CSiH, которые формируют высокую прочность (до 30 МПа), но низкую морозостойкость (до 10 циклов).

При дальнейшей выдержке образуются смешанные гидросиликаты кальция и в конечном итоге образовывается тоберморит C5Si6H5.

3) Охлаждение начинается с момента снижения температуры и давления, в результате чего происходит остывание кирпича до 100 ºС.

За счет разницы температур кирпича (100 ºС.) и окружающей среды (15 – 20 ºС.) происходит резкое испарение влаги из кирпича (до 10 – 12 %).

Существует несколько путей интенсификации автоклавной обработки.

1) Экономически выгодно проводить автоклавную обработку при t=203 – 205 ºС. и при избыточном давлении pиз=1,2 – 1,6 МПа. Такая обработка длится от 4 до 5 ч.

2) Введение в силикатную смесь и ИКВ более активных кремнеземистых компонентов (трепел, зола-унос, тонкомолотый керамический лом, керамический гравий и щебень).

3) Введение кристаллических «заправок» (от 1 до 3 %) – отходов силикатного производства.

Чем силикатный кирпич отличается от керамического и где его стоит и не стоит использовать?

Кварцевый песок (а кварц и горный хрусталь — это один минерал) и известь в соотношении 9:1 — вот, собственно, и все основные ингредиенты, которые нужны для производства силикатного кирпича. Так что, выходит, по составу он имеет больше общего со стеклом, чем с классическим кирпичом. Чем еще он отличается от своего керамического собрата и где его стоит и не стоит использовать?

Производство, виды изделий

При производстве силикатного кирпича очищенный и просеянный кварцевый песок соединяют с известковым вяжущим, увлажняют смесь паром для гашения извести, прессуют в формах и отправляют для термообработки в автоклав, где изделия твердеют в течение 10–14 часов. Таким образом, материал приобретает прочность не в результате обжига, а в результате уплотнения под давлением 8–12 атм, что позволяет сравнивать его скорее с гиперпрессованным лего-кирпичом, нежели с обычным керамическим. В процессе пропаривания и прессования из заготовок полностью удаляется воздух, песчинки тесно прилегают друг к другу (чем меньше фракция сырья, тем плотнее будет материал) и образуют твердую кристаллическую структуру, которая и определяет физико-механические свойства силикатного кирпича.

Читайте так же:
Лср клинкерный кирпич валенсия

Кроме основных компонентов (к слову, кварцевый песок может быть частично или полностью заменен золой, шлаком либо их смесью), в состав кирпича включают различные модификаторы, улучшающие его качественные характеристики, и щелочестойкие пигменты, позволяющие придать стандартному серо-белому «силикату» различные оттенки — от палевых и терракотовых до зеленых, синих, вплоть до черного. Помимо окрашивания в массе практикуется также нанесение колера на уже готовые изделия. На предприятиях, производящих сертифицированную продукцию, все сырьевые составляющие и добавки проходят экспертизу на гигиеническую и радиационную безопасность, что позволяет применять такой кирпич при строительстве объектов любого назначения, без каких-либо ограничений.

Требования к силикатному кирпичу и кладке из него содержатся в ГОСТ 379-95 «Кирпич и камни силикатные», СНиП 3.03.01-87 «Несущие и ограждающие конструкции», СНиП II-22-11 «Каменные и армокаменные конструкции», СТО НОСТРОЙ 2.9. 157-2014 « Кладка из силикатных изделий »

Как и другие кладочные строительные материалы, выпускается силикатный кирпич полнотелый и пустотелый (с несквозными пустотами в объеме 15, 20–25 и 30%), плотный и пористый, рядовой конструкционный и лицевой. У рядовых брусков допускается наличие небольшой разнотоновости (без пятен), мелких дефектов поверхности и шероховатостей. Лицевой кирпич (плоский либо фактурный, бывает также фасонным) не предполагает последующей облицовки и должен соответствовать эталонному образцу. Отметим, что эстетические «допуски» для рабочего керамического кирпича не столь строги.

Качественные силикатные бруски имеют четкую геометрию (погрешности в пределах ± 2 мм) и следующие типоразмеры (Д × Ш × В): 250 × 120 × 65 мм — одинарные, 250 × 120 × 88 мм — полуторные (утолщенные), 250 × 120 × 138/180 мм — двойные (бывают только пустотелыми и называются силикатным камнем). Примерный вес полнотелого рядового кирпича: одинарного — 3,5–4 кг, полуторного — 4–5 кг; пустотелого — 3,2 и 3,7 кг соответственно. Камни достигают массы 5,5–6 кг. Для сравнения: одинарный полнотелый керамический кирпич весит до 3,5 кг, пустотелый — до 2,5 кг.

Свойства материала

Прочность. Изделия, как полнотелые, так и пустотные, подразделяются на марки от М75 до М300, что означает предельно допустимую нагрузку на сжатие от 7,5 до 30 МПа. Прочность на изгиб полнотелого кирпича — от 1,6 до 4 МПа, пустотелого — 0,8–2,4 МПа.

Плотность. Данный показатель находится в прямой зависимости от пористости материала, то есть фактически от фракции наполнителя. Различают «силикат» плотностью до 1500 кг/м³ и от 1500 до 1900–2100 кг/м³. Тут наблюдается сложная взаимосвязь: чем меньше в теле кирпича воздуха и чем он плотнее, тем выше его прочность, но зато хуже тепло- и звукоизолирующие способности. При этом воздух ничего не весит, так что кладка из кирпича невысокой плотности, равно как и из пустотелого, оказывает меньшую нагрузку на несущее основание. Да и в производстве такой материал обходится дешевле. Оптимальное соотношение плотности и прочности для конструкционных изделий, применяемых при решении большинства задач в малоэтажном домостроении, реализовано в полнотелом и пустотелом кирпиче марок М150–М200.

Водопоглощение. У силикатного кирпича оно находится на уровне 6–12% (от веса сухого изделия), что сопоставимо с данным показателем у «керамики» — 6–14%. Влага отрицательно влияет на прочность материалов, особенно в зимнее время, когда, замерзая и расширяясь, она начинает подтачивать их изнутри. Но структура силиката хуже сопротивляется этому процессу, чем обожженная глина, и срок его службы оказывается заметно короче — порядка 25–30 лет против минимум 50–60. Для повышения гидрофобности в силикатный замес вводят специальные добавки, но кладка все равно нуждается в защите от влаги.

Чтобы оградить силикатный кирпич от воздействия лишней влаги, на стройплощадке его следует хранить под укрытием, а уже сложенные стены скорее заводить под крышу. При покупке материала обратите внимание, как он содержится на складе: если штабеля лежат под открытым небом, вы рискуете приобрести испорченный товар

Морозостойкость. Этот показатель напрямую связан с предыдущим. Согласно ГОСТ, высшая марка морозостойкости у рядового силикатного кирпича — F50, у лицевого — F25. Внесение в состав противоморозных присадок препятствует замерзанию влаги в теле материала, однако применять его для капитального строительства в регионах с влажным климатом и суровыми зимами специалисты не рекомендуют. Керамические изделия высоких марок способны выдерживать до 100 циклов замораживания-оттаивания и лучше переносят перепады температур.

Паропроницаемость. У полнотелого «силиката» она составляет 0,11 мг/(м‧ч‧Па), у «керамики» — 0,11–0,15 мг/(м‧ч‧Па). Для общей картины: показатель тяжелого бетона — 0,03 мг/(м‧ч‧Па), пенобетона — 0,26 мг/(м‧ч‧Па), а гипсокартона — 0,075 мг/(м‧ч‧Па). Притом во влажном состоянии паропроницаемость материала ухудшается. С одной стороны, способность кладки вбирать пар оборачивается намоканием и снижением технических характеристик (и тут важно, чтобы ничто не препятствовало выведению влаги из конструкции), а с другой — позволяет стенам «дышать», предотвращая выпадение на них конденсата и способствуя созданию в помещениях нормального микроклимата. Стоит отметить, что дому из силикатного кирпича не грозят высолы (если правильно приготовлен кладочный раствор), а также плесень и грибок, поскольку входящая в его состав известь работает как антисептик, подавляющий развитие микроорганизмов.

Теплопроводность. Полнотелый силикатный кирпич обладает достаточно низкой теплопроводностью — 0,7 Вт/(м‧⁰С), наличие воздушных полостей снижает ее значение примерно до 0,6–0,65 Вт/(м‧⁰С), но керамический кирпич по этой позиции так и так лидирует — 0,35–0,55 Вт/(м‧⁰С). В любом случае, чтобы добиться необходимого уровня теплоизоляции ограждающих конструкций, нужно либо выводить стены в толщину, отвечающую требованиям по теплосбережению для конкретных климатических зон застройки (что точно невозможно в большинстве регионов РФ, так как стена получится непомерно толстой), либо применять технологию вентилируемого фасада или слоистой кладки с внутренним слоем утеплителя.

Как и керамический, силикатный кирпич дает совсем незначительную усадку, и, если технология кладки была соблюдена, можно не опасаться появления в стенах трещин

Звукоизоляция. Силикатный кирпич, особенно пустотелый, хорошо гасит звуки (среднее значение звукоизоляции — 64 дБ) и по этому показателю подходит для сооружения и ограждающих стен, и межкомнатных перегородок. Так, например, для создания комфортной акустической среды в смежных помещениях достаточно кладки в полкирпича.

Огнестойкость. Группа горючести «силиката» — НГ (не горит и не распространяет огонь). При пожаре постройка из него устоит, но в результате нагревания до 700⁰С и выше и последующего остывания в материале начинают происходить структурные изменения, приводящие к потере им механической прочности. А вот керамический кирпич, уже «обжегшись» в процессе производства, спокойно выдерживает температуру в 900⁰С, не утрачивая своих качественных характеристик (возникают только поверхностные трещины и отслоения).

Читайте так же:
Кирпич рядовой кора дуба

Систематическое термическое воздействие (до 600⁰С) также губительно для силикатного кирпича из-за постепенной деструкции материала. По этой причине он не годится для строительства печей, каминов, дымовых каналов.

Химостойкость. Не стоит класть печи и дымоходы из «силиката» еще и потому, что в силу присутствия в нем извести он не переносит воздействия кислот, содержащихся в дымовых газах и оседающих на поверхностях в виде едкого конденсата.

С точки зрения химического состава агрессивной средой для материала являются и грунтовые воды, контакт с которыми должен быть исключен.

Благодаря обжигу на керамическом кирпиче образуется слой, повышающий химостойкость изделий.

Силикатный кирпич уступает керамическому по влаго- и морозоустойчивости, а также по химической и огнестойкости, он лучше проводит тепло, но благодаря своим прочностным качествам и доступной цене материал широко востребован у частных застройщиков. (Брусок белый полуторный полнотелый М150 — от 7,70 руб./шт., такой же лицевой гладкий — от 8,23 руб./шт., цветной фактурный — от 10,43 руб./шт.)

Применение

Технические характеристики силикатного кирпича четко обозначают сферы его применения.

Материал используют для возведения надземных стен жилых малоэтажных зданий с последующей защитой водонепроницаемой облицовкой, для кладки внутренних стен и перегородок, вентиляционных каналов. При этом, учитывая солидный вес изделий, потребуется грамотный расчет несущей способности фундамента. Применение пустотного кирпича позволяет снизить нагрузку на основание при реконструкции старых домов, сооружении пристроек и надстроек.

Недорогой силикатный кирпич является оптимальным вариантом для возведения гаражей, заборов, летних кухонь, отдельно стоящих котельных, мастерских и других хозяйственных строений.

А вот для кладки фундаментов, цоколей, наружных и внутренних стен во влажных помещениях «силикат» применять не стоит — для таких конструкций следует выбирать более влагостойкие материалы.

Качественный силикатный кирпич имеет четко выверенную геометрию, благодаря чему кладка из него получается ровной, выглядит аккуратно и позволяет обойтись без трудоемкого оштукатуривания

Применение и характеристики силикатного кирпича

Одним из востребованных материалом в строительстве является силикатный кирпич. Его применение отличается несложной технологией кладки, правильными формами, позволяющими соблюдать геометрию архитектурных элементов. Однако для правильного выбора следует учесть важные критерии, чтобы постройка соответствовала нормам СНиП.

Свойства и характеристики

Производится силикатный кирпич разных размеров и цветовых решений. Однако физические свойства остаются неизменными.

Состав

На 90% материал состоит из кварцевого песка. Оставшиеся 10% отводится извести. В производстве используются также другие добавки, придающие прочности и стойкости к агрессивной среде. Вначале компоненты тщательно перемешиваются, после чего прессуются и обрабатываются паром при температуре до 200 градусов. Соблюдение технологии обеспечивает качество стройматериала. При его применении на краях не образуются сколы и отслоения.

В качестве добавок используют следующие компоненты:

  • белитовый шлам;
  • песок шлаковый;
  • щелочеустойчивые пигменты;
  • мелкозернистая золошлаковая смесь;
  • зола из отходов электростанций.

Классификация

Изделия из силикатной смеси классифицируются на разновидности в зависимости от того, какие компоненты используются в производстве.

Тип кирпичейОсобенности
Известково-песчаныйВ состав входит известь от 7 до 10% и кварцевый песок от 90 до 93%.
Известково-шлаковыйСмесь получают из извести (3-12%) и пористого шлака (88-97%).
Известково-зольныйОбъём извести в общей массе составляет 20-25%, золы – 75-80%.

Вне зависимости от разновидности смесь в процессе изготовления строительного материала обогащают водой. Жидкий компонент выполняет в данном случае функцию не связующего вещества, а для увлажнения, чтобы раствор достиг формообразующей консистенции.

Размеры

Параметры изделий из силиката могут отличаться в зависимости от разновидности. Стандартный кирпич имеет размеры:

  • высота – 65 мм;
  • длина – 250 мм;
  • ширина – 120 мм.

У двойного силикатного камня показатели длины и ширины соответствуют стандартным параметрам, а высота увеличивается более чем в 2 раза (138 мм).

Плотность кг м 3

Средние показатели плотности подразделяются на две группы:

  • пористые материалы со значением до 1500 кг/м 3 ;
  • плотные – более 1500 кг/м³.

Полнотелый блок имеет плотность 1800-1950 кг/м 3 . Именно этот вид рекомендуется использовать для возведения стен, колонн, несущих конструкций.

Виды силикатного кирпича

Разновидности силикатного кирпича

  • полнотелые – самый прочный материал, подходящий для несущих конструкций (у данного вида самая высокая плотность);
  • пустотелые – внутри блоков имеются полости, вес блока снижается, что влечёт за собой изменение физических свойств;
  • поризованные – за счёт пористой структуры снижается вес изделия, но при этом уменьшается и несущая способность.

В стандартных силикатных изделиях пористость должна быть в пределах 12-13% (для полнотелого камня).

Характеристики

Объёмный вес, кг/м31300-1900
Прочность, кг/см2150-200
Коэффициент теплопроводности, Вт/(м*К)0,38-0,8
МорозостойкостьF50 (50 циклов)
Водопоглощение, %6-16
ОгнестойкостьНГ
Паропроницаемость, мг/(м·ч·Па)0,11
Вес, кг3,6 (одинарный полнотелый)
Звукоизоляция, Дб64
Средняя цена, руб.5,6-7,22 (опт)

Плюсы и минусы

Силикатный кирпич пользуется среди застройщиков большой популярностью. Высокий спрос обусловлен следующими преимуществами.

  1. Прочность – полнотелый камень выдерживает большие нагрузки. Пустотелые элементы совмещают в конструкциях с плитами перекрытия. Силикатные изделия прочнее керамических аналогов.
  2. Стоимость – это доступный материал в сравнении с другими видами кирпичей. Низкая себестоимость объясняется небольшими энергозатратами производства и незначительной цене сырья. Благодаря простому монтажу можно сэкономить бюджет путём самостоятельной кладки.
  3. Показатель звукоизоляции – выигрывает в сравнении с альтернативными вариантами, включая пустотелый камень.
  4. Внешний вид – гладкая плоскость всех сторон и чёткие грани позволяют соблюдать строгие геометрические формы при выполнении кладки.
  5. Цвет – ассортимент кирпичей пополняется разными цветовыми решениями, что даёт возможность поэкспериментировать с дизайном, воплотить в жизнь самые смелые решения.
  6. Безопасность – в составе отсутствуют токсические вещества, что подтверждается сертификатами соответствия санитарных норм.

При выборе следует учитывать его недостатки:

  1. Низкая морозостойкость – при выкладывании стен из силикатного кирпича следует предусмотреть дополнительное утепление, чтоб в зимний период в помещении температура была комфортной, а затраты на отопление – умеренными. Показатель теплоизоляции уступает керамическому кирпичу.
  2. Вес – принимая во внимание сырьё, которое используется для изготовления, блоки выходят увесистыми (превышают вес керамического кирпича).
  3. Ограничения в применении – кирпич не подходит для сооружения печей, многоэтажных зданий, фундаментных конструкций и пр. объектов с высокой несущей способностью.

Сфера применения

Силикатный кирпич характеризуется разносторонней сферой применения. Материал используют для возведения построек, перегородок. Во втором случае идеально подходит пустотелый вид, который не уступает полнотелому аналогу в звукоизоляционных качествах. Среди других областей применения:

Облицовка фасада дома силикатным кирпичом

  • отделка и декор постройки, колонны;
  • облицовка фасадов;
  • сооружение несущих конструкций;
  • кладка печных труб (с температурой в рабочем режиме не более 250 градусов);
  • строительство подсобных помещений, гаражей;
  • возведение ограждений, заборов.

Не стоит использовать кирпич для возведения цокольной части строения, заливки фундамента из-за способности материала поглощать влагу.

Как правильно класть силикатный кирпич

Освоить технологию кладки несложно. Главное соблюдать последовательность процесса. Начинать стоит с подготовки инструмента. В работе понадобятся следующие средства:

  • рулетка, маркер, металлическая метровая линейка, уровень;
  • отвес со шнуром, колышки (для соблюдения геометрии это важные приспособления);
  • мастерок;
  • лопата;
  • ёмкость для замеса раствора;
  • молоток каменщика.
Читайте так же:
Коллекционер кирпичей как называется

Кирпич перед кладкой увлажняют, чтобы предотвратить впитывание влаги с раствора. Сделать это можно путём полива материала со шланга или методом кратковременного погружения каждого элемента в таз с водой.

На поверхность фундамента нужно уложить слой гидроизоляции. Для этого вначале наносят слой битумной мастики, после настилают листы рубероида. Битум обладает высокой адгезией, отличается стойкостью к агрессивной и влажной среде. В тандеме с рубероидом получается надёжная защита фундаментной конструкции.

Всегда кладку начинают с угловых элементов. Предварительно устанавливают по уровню шнур и отвес для контроля горизонтальности и вертикальности.

Силикатный кирпич укладывают по противоположным углам, после чего заполняют ряд. Далее осуществляется переход на другую сторону. И так процесс продвигается по кругу до стыковки с углом, с которого начиналась работа. После кладки двух рядов в шов по углам устанавливают гвозди, натягивают леску или тонкую синтетическую нить. Сделать это нужно таким образом, чтоб не было провисания. При формировании рядов важно соблюдать принцип кирпичной кладки (необходимо смещать вертикальные швы по типу шахматной доски).

При совпадении вертикальных швов кладка получается ненадёжной.

Чтобы швы получались равномерными и эстетичными, рекомендуется применять в работе заранее подготовленный шаблон. Для сцепки кирпичей используют цементно-песчаный раствор. Он не должен быть слишком жидким.

На поверхность камня его наносят с помощью мастерка. Покрывается не только горизонтальная сторона кирпича, но и торцевые стороны. При укладке каждого фрагмента осуществляется простукивание молоточком для уплотнения соединительного шва, выгона воздуха и посадки на место блока. Излишки раствора убираются сразу мастерком.

После прохода каждого ряда осуществляется проверка ровности строительным уровнем. При выявлении изъянов производится корректировка с помощью молотка каменщика.

После каждого пятого ряда необходимо армировать кладку с помощью специальной стальной сетки. Если используется двойной кирпич, армирование производится после каждого четвёртого ряда.

Для формирования кирпичной кладки нужно делить камень на две или три части. Сделать это можно с помощью бензопилы, болгарки, ножовки по металлу и пр. электроинструментами. При отсутствии таковых раскол осуществляется вручную с применением зубила и молотка.

Как только раствор начнёт схватываться на сформированных рядах, приступают к расшивке. Функционал данной операции: повышение эстетических качеств, герметизация швов, увеличение эксплуатационного периода конструкции.

Форма расшивки определяется индивидуально из существующих вариантов: овальная, прямоугольная, треугольная с выпуклостью, вогнутостью и пр. Для данного вида работ используют раствор из извести, глины и цемента. Подойдут и цементно-песчаные смеси. Процесс предусматривает проведение следующих действий:

  • с помощью заострённого предмета со швов удаляют излишки раствора;
  • нанесение затирки;
  • удаление излишков затирки кельмой;
  • расшивка швов с применением специального приспособления (металлическая планочка или трубочка с определённой формой одного конца).

Остаётся только дать время на просушку кладки.

Вопрос – ответ

Можно ли использовать силикатный кирпич для фундамента?

Силикатный кирпич недостаточно прочный, что объясняется несложным технологическим процессом изготовления и свойствами сырья. Материал способен поглощать влагу. Это приводит к разрушению структуры.

Справиться с несущей способностью и противостоять агрессивной среде изделие из силиката не сможет. Поэтому категорически запрещается использовать его для кладки фундаментной конструкции.

Чем отличается силикатный кирпич от керамического?

Отличие силикатного от керамического кирпича

  1. Технология производства – схема изготовления керамики выглядит следующим образом: пластическое формование – сушка – обжиг. Для получения силикатных изделий используют прессование и автоклавирование.
  2. Сырьё – изделия из керамики делают из легкоплавких сортов глины, силикатные камни получают из песка и извести.
  3. Физические свойства – при выборе материала следует учитывать такие показатели, как: плотность, теплопроводность, морозостойкость, влагопоглощение. У сравниваемых материалов они разные.
  4. Область применения – в связи с высоким влагопоглощением область применения силикатного кирпича ограничена.
  5. Ассортимент – больше разновидностей имеет керамический кирпич.
  6. Стоимость – доступным материалом считается силикатный камень.

Сколько силикатного кирпича в кубе?

Планируя строительство любого объекта важно больше внимания уделять вопросам проекта и расчётам. Чем точнее определяется количество материалов, тем меньший перерасход бюджета. Заказ силикатного кирпича производится в кубах. А площадь кладки, зарплата рабочим учитывается в метрах квадратных. Чтобы не ошибиться с числом кирпичей, контролировать расход стройматериалов, рекомендуется воспользоваться следующим расчётом.

  1. Для начала определяется объём одного камня. При этом нужно учесть, к какому виду относится кирпич: одинарный, полуторный, двойной.
  2. Одинарный элемент имеет параметры: 250-120-65 мм. Объём вычисляется путём перемножения всех сторон. Для удобства дальнейших расчётов полученное значение следует перевести в метры. В итоге выходит 0,00195 м
  3. Чтобы определить количество камней в кубе, 1 м 3 делят на объём одного элемента (0,00195). Получается 512 кирпичей.

Аналогичным образом производится расчёт других видов силикатного кирпича.

Почему белый силикатный кирпич трескается на швах?

Спровоцировать образование трещин на силикатном кирпиче могут следующие причины.

Появление трещин на стенки из силикатного кирпича

Некачественный материал

Нередко некондиционная продукция попадает к застройщику, как обычный стройматериал. О низком качестве кирпича становится известно только в процессе эксплуатации постройки. Появление трещин на швах может быть связано с нарушениями технологии производства силикатных камней или дозировки компонентов состава.

Неправильный расчёт фундамента

Экономия на проекте фундаментной конструкции выливается в преждевременное разрушение структуры бетона. Несущая способность снижается, что влечёт за собой разные деформации, включая трещины на кирпиче по швам.

Неправильная гидроизоляция здания

При регулярном воздействии влаги нарушается структура силикатного кирпича. При наступлении морозов процесс развивается интенсивней из-за размораживания влаги в порах материала.

В зависимости от выявленной причины разрабатываются мероприятия, направленные на устранение дефекта.

Блок схема силикатного кирпича

Toggle navigation

Ремонт в регионах

Силикатный (по составу сырья — известково-песчаный) кирпич изготовляется из смеси кварцевого песка с гашеной известью прессованием под большим давлением. Затем отформованный кирпич отвердевает в автоклаве под действием водяного пара высокого давления. В результате реакции между известью и песком образуется гидросиликат кальция, почему кирпич и назван силикатным

Способы производства кирпича

Известково-песчаные растворы применяют в качестве строительного материала уже с древних времен. Такие растворы дают в первые месяцы незначительную прочность —2—10 кг/см2 и в обычных условиях твердеют медленно, даже в тонких слоях. Поэтому известково-песчаные растворы не могли служить материалом для стен многоэтажных зданий.

силикатный облицовочный кирпич

В 1880 г. немецким ученым Михаэлисом был открыт способ изготовления кирпича высокой прочности из прессованного жесткого известково-песчаного раствора. Этот раствор твердеет под действием водяного пара при высокой температуре и давлении.

В настоящее время среди материалов для кладки стен силикатный кирпич занимает второе место после обыкновенного глиняного кирпича.
Размеры силикатного кирпича те же, что и глиняного. Цвет светлосерый, но вводя в состав кирпича минеральные пигменты (сухие краски), можно получить облицовочный силикатный кирич различного цвета.

Читайте так же:
Бизнес проект производство кирпича

Процесс производства этого кирпича в принципе такой же, как и силикатного, но сырец получается более прочным, повышается также прочность и водостойкость кирпича. Одновременно расширяется сырьевая база для изготовления кирпича.

Завод силикатного кирпича

схема завода

Схема производства силикатного кирпича : 1— дробилка; 2 — шаровая мельница; 3 — воздушный сепаратор; 4 —дозирующий аппарат; 5 —смесительный шнек; 6 — силос; 7 — бегуны; 8 — пресс; 9 — гасильный барабан; 10 — запарочный автоклав

Сырье, применяемое для производства силикатного кирпича, дешево и широко распространено. Это кварцевый песок (90— 92%; от веса сухой смеси), известь [8—5% в расчете на СаО или 10—8%1 Са(ОН)2] и вода для гашения извести и придания известково-песчаному раствору требуемой для прессования кирпича влажности (около 7%).

Чтобы уменьшить объемный вес, а следовательно, и теплопроводность кирпича, часть песка можно заменить шлаком, золой и т. п.
Песок должен состоять из зерен разных размеров для уменьшения объема пустот, подлежащих заполнению известью (хотя вообще пустоты заполняются не полностью). Желательно, чтобы зерна имели остроугольную форму и шероховатую поверхность, при которой улучшается сцепление их с известью. Так как реакция извести с кварцевым песком происходит по поверхности зерен песка, то в нем должно содержаться достаточно мелких зерен, имеющих большую поверхность. Полезно введение части молотого песка, что повышает прочность кирпича.

Производство силикатного кирпича состоит из следующих процессов:

  1. добычи песка в карьере; обычно она производится одноковшовым экскаватором;
  2. подготовки извести (дробление и помол); помол ускоряет гашение извести и позволяет использовать ее полностью;
  3. гашения извести в смеси с песком (в силосах или барабанах);
  4. дополнительного перемешивания массы;
  5. формования кирпича путем прессования;
  6. пропаривания его в автоклавах под давлением, необходимого для затвердевания кирпича.

Гашение извести в смеси с песком осуществляется в железо бетонных силосах (резервуарах) или, что гораздо быстрее и полнее, во вращающихся барабанах.
Негашеная известь, поступающая из известеобжигательной печи, дробится в дробилке, затем размалывается в шаровой (трубной) мельнице, после чего поступает в бункер. Далее песок и известь проходят дозирующие автоматические аппараты и попадают в мешалку, где увлажняются.

При силосном способе производства влажная смесь загружается в силосы: там она вылеживается до полного гашения извести (от 8 до 10 час, а при подогреве известково-песчаной смеси паром этот срок сокращается до 2—4 час). При барабанном способе смесь поступает в герметические стальные барабаны-гидраторы , вращающиеся вокруг горизонтальной оси. В эти барабаны подают пар под давлением до 5 am. Под действием пара и интенсивного перемешивания гашение протекает быстро (30— 50 мин.).

После гашения смесь желательно еще раз перемешать в мешалке или в бегунах, увлажнив водой.способ подготовки известково-песчаной смеси, называемый дезинтеграторным. Он заключается в следующем: дробленая известь-кипелка гасится в барабане, затем смешивается с песком и измельчается в дезинтеграторе. Здесь происходит энергичное перемешивание, разбиваются комки извести и глинистые включения. Благодаря этому быстрее и полнее протекает реакция между известью и песком при пропаривании.

Дезинтеграторный способ производства кирпича позволяет экономить до 30% извести и повышает прочность силикатного кирпича.
Подготовленная тем или иным способом известково-песчаная смесь с влажностью около 7% поступает на прессы для формования кирпича. Прессованием под давлением до 150—200 кг/см2 кирпичу придают правильную форму и необходимую плотность.

После прессования кирпич (сырец) получают еще не затвердевшим, хотя его и можно брать руками. Чтобы он затвердел, его пропаривают под давлением в автоклавах (стальных барабанах) диаметром около 2 м, длиной до 20 м, герметически закрывающихся с торцов крышками. В автоклавы медленно пускают насыщенный пар под давлением около 8 ати. Кирпич пропаривается в течение 5—8 час, после чего пар перепускают в другой автоклав.

Для ускорения твердения кирпича в автоклаве в состав сырьевой смеси вводят небольшую добавку сульфата натрия.
В производстве силикатного кирпича почти все процессы механизированы, поэтому силикатный завод обслуживается значительно меньшим числом рабочих, чем завод глиняного кирпича. Заводы силикатного кирпича, несмотря на большую производительность (50—300 млн. шт. в год), занимают небольшую территорию. Изготовляют силикатный кирпич во много раз быстрее, чем глиняный; силикатный С не более одних суток, а глиняный свыше 5 суток.

Производство и получение силикатных изделий и карбонизированных камней

Из известково-песчаных растворов помимо силикатного кирпича можно изготовлять различные изделия, например: камни и даже крупные блоки для стен, плиты для перекрытий, плиты для облицовки зданий, ступени и т. п.

Силикатные изделия

Чтобы придать силикатным изделиям необходимую прочность, их нужно формовать из растворов жесткой или малопластичной консистенции, сильно уплотняя прессованием, трамбованием., вибрированием, центрифугированием и т. п., а затем пропаривать в автоклаве при температуре около 175° и давлении пара 8 ати. Плиты и другие изделия, которые будут работать под нагрузкой на изгиб, армируют в растянутой зоне стальной проволокой, желательно предварительно напряженной.

завод силикатного кирпича

Силикатные изделия с повышенной прочностью

Для получения силикатных изделий с повышенной прочностью и морозостойкостью часть песка размалывают, увеличивая его поверхность, чем усиливается взаимодействие песка с известью. Для этих же целей добавляют цемент, применяя, например, раствор 330 состава 1:1:6 (известь : цемент : песок) для изготовления фасадных облицовочных плит.

Используя светлый (почти белый) кварцевый песок и известь, можно получить силикатные изделия светлых оттенков, а добавляя к смеси минеральные пигменты (сухие краски), и окрашенные изделия.
При дезинтеграторном способе подготовки известково-песчаной смеси, а также при тонком помоле песка можно получать силикатные материалы с прочностью при сжатии до 1000 кг/см2 и благодаря этому изготовлять высококачественные силикатные трубы, черепицу, облицовочные плиты, плитки для полов и т. п.

Смешивая известково-песчаные растворы с пеной, получают пеносиликат, который после пропаривания: в автоклаве отвердевает и приобретает достаточную прочность при сравнительно небольшом объемном весе.

Карбонизированные камни

Способ изготовления стеновых камней, назван карбонизированным. Их изготовляют из известково-песчано-шлаковой смеси (с небольшой добавкой гипса), формуют на таких же станках, как и шлакобетонные камни, подсушивают (за счет тепла, выделяемого молотой известью» кипелкой при ее гашении в камнях) до оптимальной влажности и подвергают искусственной карбонизации углекислым газом, отходящим из известково-обжигательных печей.

Этот способ выгоден, так как не требует автоклавов и затраты цемента. Принцип карбонизации известково-песчаных материалов был впервые предложен академиком А. А. Байковым, а применен по предложению канд. техн. наук К. С. Зацепина для производства стеновых и перегородочных камней на нескольких заводах. При дальнейшем повышении прочности и морозостойкости карбонизированные камни смогут получить более широкое применение. Разработан также легкий термоизоляционный материал — пенокарбонат, аналогичный пеносиликату, но изготовленный с применением карбонизации.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector