88889.ru

Отделка плиткой и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Б. КРУТИЗНА ОТКОСОВ

Б. КРУТИЗНА ОТКОСОВ

Крутизна откосов земляного полотна в первую очередь определяется углом естественного откоса грунта. Для большинства рыхлых грунтов угол естественного откоса близок к I : I. Эта крутизна принята в качестве стандарта для откосов как насыпей, так и выемок, при отсутствии каких-либо особых условий.

Вновь отсыпанные насыпи обычно сохраняют устойчивость при крутизне откосов, лишь несколько превышающей 1 : I1,. Свеже сооруженные выемки, напротив,нередко в течение длительного времени сохраняют устойчивость при значительно более крутых откосах, однако с течением времени вследствие распучи- вания и размывов откосы в выемках принимают то же очертание, что и в насыпях, отсыпанных из тех же грунтов.

1. Влияние эрозии и выветривания. Даже в тех случаях, когда принятая крутизна откосов не превышает угла естественного откоса влажного или сухого грунта, в результате выветривания грунтов происходит обрушение и уположение верхней части откоса н еще большее уположение нижней части вследствие отложения материала смыва у его подошвы.

Длина откоса крутизной 1 ; 2 приблизительно на г/а больше, чем длина откоса 1 : I, и, следовательно, такой откос получает дождевых осадков на , больше. В результате этого накопление смытого материала у его подошвы может быть так же велико или даже больше, чем у более крутого откоса. При уширении выемок обычно предусматривают устройство полок для накопления значительных объемов смываемого с откосов грунта.

2. Оползания откосов. При оползании откосов выемок, происшедших как при их сооружении, так и во время эксплуатации, необходимо производить вырезку грунта до установления естественного равновесия, тем самым автоматически уполаживая откос .

Если насыпь подвергается насыщению водой, затапливающей ее откосы на некоторую высоту, то для стабилизации такой насыпи применяют уположение откосов ниже уровня воды, террасирование или отсыпку каменных контрбанкетов достаточного объема, чтобы противостоять возросшему давлению насыщенного водой грунта насыпи. Отсыпка контрбанкетов обычно является мерой более дешевой, чем уположение откосов, и поэтому широко применяется большинством железных дорог. Контрбанкеты должны возвышаться на достаточную высоту над уровнем воды с тем, чтобы служить защитой от волн и ледохода.

3. уширение выемок или уположение их откосов. Если для отсыпки насыпи необходимо взять из выемки больше грунта, чем это может быть получено при разработке выемки нормального сечения, то возникает вопрос об относительной целесообразности уширения выемки или уположения ее откосов. При уположении откосов увеличивается их длина и соответственно возрастает интенсивность их размыва, также увеличивается и объем смываемого дождями грунта. Для глубоких выемок при этом может оказаться необходимым дополнительное уширение полосы отчуждения. Применение откосов более пологих, чем угол естественного откоса грунта, не дает особых преимуществ, в то время как экономия, полученная при уширении выемок, в необходимых случаях может оказаться весьма значительной.

Исключение составляют мелкие выемки в снегозаносимых районах, где уположение откосов до крутизны, например 1 : 4, уменьшает количество отлагающегося в выемке снега. Избыточный грунт используется для отсыпки насыпей. При уположении откосов от крутизны 1 : Р/г до крутизны 1 :2 ширина выемки увеличивается на половину ее глубины, что может оказаться с позиций уменьшения снегозаносимости выемки желательным во многих случаях. На большинстве откосов следует сохранять растительность, которая связывает рыхлые грунты и препятствует их эрозии. Когда крутизна откоса при этом не превышает угла естественного откоса грунта, растительность хорошо укрепляетоткос, если грунт достаточно богат гумусом для ее произрастания; если же этих условий нет, то уположение откоса не дает эффекта.

4. Террасирование. Лишь немногие дороги применяют террасирование откосов в сколько-нибудь значительном объеме, при этом встречается значительное разнообразие в ширине и высоте террас. Почти всегда это мероприятие применяют на насыпях. Одна из западных дорог принимает ширину террас в 1,80 м при высоте насыпи более 7,5 м, с добавлением одной террасы шириной 3,60 м при высоте насыпи более 15,0 м.

В некоторых случаях возникает необходимость в террасировании откосов глубоких выемок с устройством на террасах мощеных канавок с самостоятельными выпусками из них по концам выемки. Очевидно, в этом случае, чтобы быть эффективным, террасирование требует особенно тщательного выполнения. Если, например, не будет выдержан продольный уклон террас, может произойти перелив воды из канавок в пониженных точках, что может оказать более разрушающее действие, чем если бы вовсе не устраивать террасирования.

Для скальных выемок вследствие разнообразия пород, подходящих под классификацию скальных, трудно установить общие правила их разработки. В каждом отдельном случае условия разработки должны оцениваться индивидуально. Техническими условиями крутизна откосов обычно устанавливается для легко- выветривающейся скалы в 1 : 0,5 и для слабовыветривающейся скалы I : 0,25, но при этом следует учитывать местные условия. Некоторые прочные скальные породы хорошо держат вертикальный откос, но большинство требует некоторого уположения, особенно в глубоких выемках.

У подошвы откоса рыхлых пород (делювий), покрывающих скальные породы, должна оставляться берма шириной не менее 1,5 м: ширину бермы увеличивают при мощности рыхлых пород более 3,0 м.

1. Стандартную ширину основной площадки земляного полотна следует определять исходя как из условий стоимости строительства, так и из условий удобства эксплуатации.

При определении ширины основной площадки земляного полотна необходимо исходить из установленной ширины балластной призмы и учитывать запас на естественное оседание грунта вследствие уплотнения, а также запас на возможный размыв откосов и обочин.

2. Основными условиями, учет которых может потребовать увеличения ширины основной площадки более нормальной, являются: в выемках — условия отвода воды, а на насыпях— их высота и интенсивность оседания.

3. Стандартная крутизна откосов насыпей и выемок должна быть несколько меньше, чем угол естественного откоса грунтов в рыхлом состоянии, из которых они отсыпаны. Этому условию обычно отвечает крутила откоса 1:1 •/•

4. Основным условием, требующим уположения откосов, является неустойчивость грунта; однако уположение откосов высоких насыпей и глубоких выемок требует значительного дополнительного объема земляных работ, поэтому в нужных случаях необходимо исследовать возможность применения других способов укрепления откосов,например дренированием выемок и устройством контрбанкетов у насыпей

Читайте так же:
Для чего применяют грунтовку при ремонте

5. При условии тщательного выполнения работ можно на высоких насыпях и в глубоких выемках с успехом применять террасирование откосов, однако обычно в этом нет необходимости.

6. При сооружении каждой выемки и насыпи необходимо тщательно изучить местные условия с тем, чтобы установить, следует ли при их сооружении отступить от стандартных размеров, и если следует, то в каком направлении и на сколько.

Полевые методы испытания грунта

Полевые испытания грунтов производятся на площадках, где планируют строить или проводить реконструкцию инженерных сооружений. Для проведения исследований применяют специальную технику и оборудование. Испытательные мероприятия выполняют аккредитованные строительные лаборатории. Тесты предназначены для решения разных задач.

В ходе полевых испытаний:

  • изучают массивы грунтов, разделение георазреза, оконтуривание водных линз, прослоев;
  • определяют прочность, деформационные и физические характеристики почвы;
  • выявляют пространственную изменчивость характеристик грунта;
  • оценивают возможность погружения и несущую способность свай;
  • ведут стационарные наблюдения за физико-механическими свойствами насыпных и намывных грунтов и их изменением во времени;
  • определяют динамическую устойчивость грунтовых слоев, насыщенных водой.

Полевые испытания включают большой комплекс мероприятий. Рассмотрим виды исследований более подробно.

Статическое зондирование

Данный метод широко применяется в России из-за частого использования свайных фундаментов в качестве основания для различных зданий. Исследование проводится по ГОСТ 19912-2012. В ходе статического зондирования получают большой комплекс данных: рассчитывают несущую способность свай, получают сведения о недренированной прочности грунтовых слоев (сопротивление сдвигу нестабилизированных оснований), вычисляют угол внутреннего трения, а также компрессионный модуль деформации, пороговое давление. Кроме того, сейчас глубина испытания увеличилась до 45 м, благодаря применению специального оборудования.

Методика позволяет отбирать образцы подземных вод и пород, исследовать грунты в условиях естественного залегания. С помощью проб, которые получают при статическом зондировании, решают ряд важных задач, например:

  • проводят разделение георазреза на слои, которые идентифицируют по глубине и площади;
  • классифицируют грунты по свойствам, составу, состоянию;
  • исследуют пространственную изменчивость характеристик, чтобы выбрать обоснованную расчетную модель фундамента;
  • определяют физико-механические свойства, используя специальные формулы и аналитический подход;
  • выполняют проектирование и расчет оснований, в т.ч. определяют расчетное сопротивление грунта, нагрузки на сваю, осадок сваи и пр.

Одновременно со статическим зондированием выполняются геофизические исследования, включающие электроразведку, сейсмическое профилирование и т.д.

Динамическое зондирование

Исследование выполняют по ГОСТ 19912-2012. Данный метод используют в грунтах, где естественным основанием является песчаный слой, а фундамент сделан, как плитный ростверк, т.е. верхняя часть фундамента распределяет нагрузку между несущими элементами здания. Для проведения исследования используют зонд, ударную установку и измерительное оборудование. Применяют специальные колесные или гусеничные установки с молотом весом до 63,5 кг. В ходе зондирования получают следующие данные о грунтовых слоях:

  • показатель недренированной прочности;
  • параметры динамического сопротивления;
  • недренированный модуль деформации.

Несмотря на то, что получаемых сведений немного, их хватает для проектирования зданий и сооружений со средней или малой нагрузкой на основание.

Испытания штампами

Данные исследования проводятся в соответствии с ГОСТ 20276.1-2020, чтобы определить штамповый модуль деформации грунта, т.е. деформационные свойства грунта на каждом этапе нагрузки. В ходе тестов моделируют реальную вертикальную нагрузку сооружения на толщу с учетом масштабного эффекта. При исследовании прослеживают осадку, вычисляют величину предельного давления, вызывающего деформацию почвы. Таким образом, данный метод представляет собой натурное моделирование процесса уплотнения грунта, т.е. исследование, проводимое в условиях, соответствующих условиям эксплуатации.

Штамп выполнен в виде винтовой или плоской конструкции, может различаться по площади подошвы, видам установленного оборудования для нагружения и модификации измерительных приборов для определения осадки.

Прессиометрия

Прессиометрия (ГОСТ 20276.2-2020) – еще один метод полевых испытаний, который используют, чтобы оценить прочность и деформационные свойства скальных, а также щебенисто-глинистых и песчаных грунтов в стенках буровых скважин. В ходе исследования прикладывается давление к грунту, который вскрывается в стенках скважин, а затем измеряется степень деформации.

Испытания проводятся радиальными прессиометрами. По сути, оборудование определяет те же характеристики, что и штампы. Но принцип действия установки совершенно другой. Прибор опускают в скважину на металлическом тросе, он давит на стенки за счет расширения камеры. Т. е. давление осуществляется сбоку, а не сверху.

Вращательный срез

Испытания на сдвиг (вращательный срез) проводят по ГОСТ 20276.5-2020 для глинистых текучих и мягкопластичных грунтов, рыхлых песков, торфяных отложений, где отобрать образцы с ненарушенной структурой невозможно. Также метод применяют для грунтов, прочностные свойства которых, определенные лабораторными методиками, недостоверны. Исследование проводится лопастными приборами в оборудованной скважине в целях определения прочности. Специальный прибор – сдвигомер-крыльчатка – оценивает удельное сцепление и сопротивление сдвигу. Исследования проводят путем определения максимального крутящего момента, который возникает при вращении крыльчатки с 4-мя лопастями, погруженной в грунт.

Опытно-фильтрационные испытания

Опытно-фильтрационные исследования – это комплекс полевых методов испытаний (ГОСТ 23278-2014), которые определяют гидрогеологические, гидродинамические свойства грунтовых слоев. К таким методикам относятся:

  • наливы в шурфы и скважины;
  • кустовая и экспресс-откачка из скважин;
  • нагнетание воздуха или воды в скважины;
  • стационарный мониторинг за количеством подземных вод и их химическим составом;
  • полевые индикаторные методики.

Откачка вод из горных выработок выполняется, чтобы решить различные задачи, связанные с орошением, осушением, водоснабжением. По информации, полученной в ходе исследования, определяют удельный и общий дебиты (производительность скважины), показатели снижения уровня, рассчитывают коэффициенты фильтрации, форму, темпы роста, размеры депрессионной воронки и другие параметры. На участках, где подземные воды залегают глубоко, или условия неблагоприятны для проведения откачки, используют наливы воды и нагнетания воздуха в шурфы. Нагнетания воздуха позволяют оценить фильтрационные свойства, удельное водопоглощение скальных и полускальных водоносных пород. Наливы воды помогают изучить водопроницаемость необводненных рыхлых и связных горных пород в условиях естественного залегания.

Читайте так же:
Грунтовки или пва для пола

Экспресс-методики применяют, чтобы провести ориентировочную сравнительную оценку фильтрационных характеристик водоносных пород на первых стадиях гидрогеологических исследований.

Компрессионные испытания

Компрессионные методы применяют в целях изучения механических свойств, деформационных показателей грунта. На образец воздействуют высоким давлением. Исследование проводится по ГОСТ 12248.4— 2020. В ходе испытания грунт сжимают таким образом, чтобы он не расширялся по бокам.

Основные параметры, которые определяют в ходе компрессионного воздействия, это:

  • плотность грунтовых образцов;
  • плотность мелких частиц;
  • естественную влажность грунта.

На основе полученных данных рассчитывают начальный показатель пористости почвы. Определение сжимаемости – также один из этапов компрессионных исследований. Данный параметр используется как расчетный модуль деформации, который позволяет определить усадку сооружения, изучить почву, понять, может ли она использоваться, как основание под строительство здания. После выполнения теста образцы классифицируют по категориям на незначительно сжимаемые, сильно сжимаемые и средней степени сжатия. Расчет показателей сжатия требуется для определения риска осадки сооружения, оценки свойств грунта.

Также в ходе компрессионных испытаний определяют прочность. Для этого выявляют условия, при которых возникают трещины отрыва и сдвига, которые происходят на участках движения слоев грунтовых пород.

Оборудование и спецтехника для полевых испытаний

В ходе проведения полевых испытаний грунтовых слоев применяют разные виды оборудования. Это:

  • Электронный динамический плотномер, с помощью которого выявляют прочность и показатели деформации грунта, оснований дорог, исследуют грунтовые основания в целях их улучшения. Прибор используется при штамповом испытании, динамическом нагружении. С его помощью получают следующие показатели: динамический модуль деформации, несущая способность основания, коэффициент уплотнения.
  • Дилатометр Маркетти. Прибор представляет собой лопатку, выполненную из нержавеющей стали с мембраной, установленной с одной стороны. Лопатку внедряют в почву посредством буровых установок или пенетрометров. Измерения проводятся в грунтовых слоях, на месте, где выполняются работы. Внедрение прибора прерывается каждые 20 см, мембрана наполняется воздухом, и измеряются показатели давления. Оборудование подходит для испытаний разных типов грунтов: песчаных, глинистых, илистых, твердых. С помощью дилатометра можно прогнозировать оседание, определять тип грунта, недренированную прочность и другие характеристики.
  • Геотехническая зондировочно-буровая установка. Используется для статического зондирования, лопастной прессиометрии, среза, бурения скважин, динамического зондирования. Бурение осуществляется за счет подвижного вращательного прибора.
  • Аппаратура для статического зондирования немерзлых глинистых и песчаных грунтов. Это дополнительное оборудование к буровым установкам, которое оказывает усилие на забой не меньше 30 кН.
  • Прессиометр. Используется для испытаний грунтовых пород в скважинах посредством воздействия бокового давления в целях определения деформационных и прочностных свойств.
  • Винтовые штампы. Это установка с пневматической нагрузочной системой, которая определяет модуль деформации в глинистых, экологических, песчаных, органо-минеральных грунтах.

Также во время полевых испытаний применяют различные измерительные приборы, комплекты регистрации результатов и пр. По окончании проверок составляется протокол.

Полевые испытания – это широко распространенные методики. Данный комплекс исследований позволяет проводить проверки непосредственно на объекте и получать первичные результаты о свойствах и состоянии грунта. Но чтобы результаты были точными и достоверными, проводить полевые испытания должна аккредитованная строительная лаборатория, в которой есть все необходимое для решения самых сложных задач.

Для определения высоты вертикального откоса связного грунта используется теория

Дисперсный грунт – это:
грунт, состоящий из отдельных минеральных частиц (зерен) разного размера, слабосвязанных друг с другом

Явления просадки в основном характерны для:
лёссовых грунтов

Скальный грунт – это:
грунт, состоящий из кристаллитов одного или нескольких минералов, имеющих жесткие структурные связи кристаллизационного типа

Поперечный размер глинистых твердых частиц составляет:
< 0,005 мм

Слой грунта, на который непосредственно опирается подошва фундамента, называется
Несущим

Разновидность скальных грунтов по прочности устанавливается:
по пределу прочности на одноосное растяжение

Общие деформации грунта рассматривает:
теория фильтрационной консолидации

Полускальный грунт – это:
грунт, состоящий из одного или нескольких минералов, имеющих жесткие структурные связи цементационного типа

Виды воды, содержащейся в грунте:
химически связанная, физически связанная, свободная

Структурно-неустойчивые грунты – это:
грунты, способные изменять свои структурные свойства под влиянием внешних воздействий

Для общих расчетов устойчивости оснований, откосов и склонов, определения давление грунта на ограждения используется модель теории:
предельного напряженного состояния грунта

Газовая составляющая грунта может быть представлена:
атмосферным воздухом

Разделение напряжений, возникающих в грунте, на напряжения в скелете грунта и поровое давление характерно для теории:
фильтрационной консолидации

Грунт состоит из:
твердых частиц, воды, газа

Поперечный размер песчаных твердых частиц составляет:
0,05 — 2 мм

Грунт – это:
рыхлые горные породы – несвязные и связные, прочность связей которых во много раз меньше прочности самих частиц

Основание – это:
область грунта, воспринимающая давление от сооружения

Фундамент – это:
подземная часть сооружения, предназначенная для передачи нагрузки от сооружения грунту

Автором первой фундаментальной работы по механике грунтов считается:
Кулон (Франция, 1773)

Насыпной грунт – это:
техногенный грунт, перемещение и укладка которого осуществляются с использованием транспортных средств, взрыва

Текстура грунта может быть:
слоистая, порфировидная, слитная
Структура грунта может быть:
зернистая, сотообразная, хлопьевидная

МОДУЛЬ 2
Какие параметры грунта необходимо знать для определения расчетного сопротивления глинистых грунтов?
показатель текучести и коэффициент пористости

Наиболее пригодны для целей строительства грунты с коэффициентом пористости e:
0,4 — 0,6

Как определяется влажность грунта на границе раскатывания?
по содержанию влаги в грунте, который не выдерживает раскатывания в жгуты тоньше 3мм

Для нахождения среднего значения показателей в математической статистике принято считать достаточным:
шесть результатов определения параметров

Степень влажности грунта определяется по формуле:
Sr = (ρs / ρw)∙(W/e)

Ошибки в результатах определения параметров, связанные с применением плохой аппаратуры, называются:
Систематическими

По какой из формул определяется удельный вес сухого грунта?
γd = γ / (1+W)

Грунт относится к глинам, если:
Ip > 17

Показатель текучести определяется по формуле:
IL = (W – Wp) / Ip

Влажность грунта определяют высушиванием при температуре и времени:
(105±2)оС, 8 часов для глинистых, 4 часа для песчаных

Читайте так же:
Для чего нужна грунтовка перед покраской пола деревянного

По какой из формул определяется консистенция грунта?
Wn = Wt – Wp

Крупнообломочные и песчаные грунты являются насыщенными водой при степени влажности Sr
Sr > 0,8

Метод квартования используют для:
подготовки проб грунта к исследованию

Что называется объемным весом грунта?
вес единицы объема грунта естественной влажности

Удельный вес грунта – это:
отношение веса твердых частиц грунта к их объему

По числу пластичности устанавливают:
вид глинистого грунта

Песчаные грунты находятся в рыхлом состоянии при плотности сложения D:
0 ≤ D ≤ 1/3

Монолит грунта – это:
уплотненный грунт с созданием монолитной структуры

Физические характеристики грунта делятся на:
основные, производные и классификационные

По показателю текучести устанавливают:
состояние глинистого грунта

Коэффициент пористости определяется по формуле:
= (ρs – ρd) / ρd = ρs / ρd – 1

Оптимальная влажность при уплотнении – это:
влажность, при которой достигается наибольшая плотность скелета грунта

Число пластичности определяется по формуле:
Ip = WL – Wp

МОДУЛЬ 3
Модуль деформации грунта можно определить
в лабораторных условиях по компрессионной кривой
в полевых условиях с помощью штампов
по таблицам СНиП 2.02.01–83*

При изучении водонепроницаемости фильтрацией называют:
движение свободной воды в порах грунта

Что выражает компрессионная кривая?
относительное изменение коэффициента пористости от приложенного давления

Для оценки фильтрационных свойств грунтов используются:
Кф – коэффициент фильтрации, i – гидравлический градиент

Грунт относится к среднесжимаемым при коэффициенте сжимаемости m0
m0 = 0,005 — 0,05

Для учета бокового расширения грунта используется коэффициент:
Пуассона

Лучшими строительными свойствами обладает грунт с характеристиками:
φ = 28° e = 0,45 E = 25 МПа

Закон уплотнения грунта описывается зависимостью:
de = – m0 ∙dp

Деформации грунта вызываются
действующими в грунте напряжениями

Грунтовые воды называются агрессивными, если они:
способны разрушать цементные растворы и бетоны

Грунтовые воды – это:
воды первого от поверхности постоянного водоносного горизонта, залегающие на выдержанном водоупорном горизонте

Для оценки прочностных свойств грунтов используются:
φ – угол внутреннего трения, с – коэффициент сцепления

Основными закономерностями, рассматриваемыми в механических свойствах грунтов, являются:
закон уплотнения, закон сопротивления сдвигу, закон фильтрации

Как определяется сцепление глинистого грунта?
по графику зависимости сдвиговых напряжений от уплотняющей нагрузки

Сдвиг грунта – это:
процесс изменения расположения частиц грунта под действием внешних сил

Для оценки деформативных свойств грунта используются:
m0 – коэффициент сжимаемости; E0 – модуль деформации

МОДУЛЬ 4
Распределение напряжений в грунтовом массиве рассматривается в фазе:
Уплотнения

Фаза сдвигов характеризуется:
уровнем напряжений, не намного превышающих структурную прочность грунта

Дополнительное уплотнение для недоуплотненных и разуплотнение для переуплотненных грунтов называется:
Дилатансией

Напряжения при действии любой распределенной нагрузки определяются по методу:
элементарного суммирования

Грунт находящийся ниже уровня грунтовых вод испытывает:
Все ответы верны

Удельный вес грунта, залегающего ниже уровня грунтовых вод, определяется по формуле:
γsb=(γs – γw)/(1+e)

Расчетная модель линейно-деформируемой среды характеризуется:
модулем деформации при нагрузке и модулем упругости при разгрузке

Фаза упругих деформаций характеризуется:
уровнем напряжений, не превышающих структурной прочности грунта

При использовании решений теории упругости применительно к грунту принимают следующее:
грунт является сплошным линейно-деформированным телом, испытывающим одноразовое загружение

При определенных допущениях решения теории упругости применимы в фазе:
упругих деформаций и выпора

Модуль деформации грунта учитывает:
упругие и остаточные деформации грунта

Бытовыми давлениями называются:
вертикальные напряжения от собственного веса грунта

Решение задачи Буссинеска основано на следующей гипотезе:
нормальные напряжения, лежащие в вертикальной плоскости, на площадках, нормальных к сферической поверхности с центром в точке приложения силы, равны нулю
нормальные напряжения на площадках, касательных к сферической поверхности с центром в точке приложения силы, прямо пропорциональны косинусу угла видимости и обратно пропорциональны квадрату радиуса сферы
нормальные напряжения на площадках, касательных к сферической поверхности с центром в точке приложения силы, являются главными напряжениями

Расчетная модель упругопластической среды характеризуется:
функциональной зависимостью деформаций от напряжений

Напряжения при действии равномерно распределенного давления в произвольной точке массива грунта определяются по методу:
угловых точек

Остаточные деформации грунта можно не учитывать:
при одноразовом загружении

МОДУЛЬ 5
Неравномерные осадки в период эксплуатации могут вызываться:
изменением положения уровня грунтовых вод, динамическими воздействиями

Особенности деформирования различных типов грунтов существенно зависят от:
состояния грунта и интенсивности действующих нагрузок

Деформации набухания вызываются:
проявлением расклинивающего эффекта в результате действия электромолекулярных сил

В зависимости от ширины подошвы фундамента в наибольшие деформации возникают при:
в < 0,5 м

Неравномерные осадки уплотнения могут вызываться:
неоднородным напластованием грунта, неодинаковым загружением фундаментов

При расчете осадок по методу послойного суммирования мощность элементарного слоя составляет (в – ширина подошвы фундамента) не более:
0,4∙в

При расчете осадок методом послойного суммирования степень сжатия грунта учитывается:
модулем деформации грунта

Деформации уплотнения вызываются:
разрушением скелета грунта и отдельных его частиц в точках контактов, взаимным сдвигом частиц, выдавливанием поровой воды

Пластические деформации вызываются:
развитием местных сдвигов в областях предельного напряженного состояния

Дополнительные вертикальные напряжения от нагрузки определяются по методу:
эквивалентного слоя

Напряжения в грунтовом массиве от действия внешней нагрузки называют:
дополнительными напряжениями

Реология грунтов изучает:
еформации ползучести, релаксацию напряжений и длительную прочность материалов

Осадки грунта – это:
деформации, происходящие в результате уплотнения грунта под воздействием внешних нагрузок и в отдельных случаях собственного веса грунта, не сопровождающиеся коренным изменением его структуры

Разрушение грунта в основном происходит:
под действием сдвиговых напряжений

Неравномерные осадки разуплотнения могут вызываться:
действием нагрузок, не превышающих веса извлеченного из котлована грунта

Неравномерные осадки расструктуривания могут вызываться:
метеорологическими воздействиями, действием грунтовых вод

Релаксацией напряжений называется:
уменьшение напряжений (расслабление напряжений) при постоянстве общей деформации

Деформации оседания — это:
деформации земной поверхности, вызываемые разработкой полезных ископаемых, изменением гидрогеологических условий, понижением уровня подземных вод, карстово-суффозионными процессами и т. п.

Читайте так же:
Дорога грунтовка 7 букв

Процессы затухания осадки грунта во времени описываются теорией:
фильтрационной консолидации

Просадки грунта – это:
деформации, происходящие в результате уплотнения и, как правило, коренного изменения структуры грунта под воздействием как внешних нагрузок и собственного веса грунта, так и дополнительных факторов

МОДУЛЬ 6
Одной из причин потери устойчивости откосов и склонов является:
изменение внутренних сил
увеличение внешней нагрузки
проявление сейсмических сил

Угол внутреннего трения и угол естественного откоса рыхлого песка в сухом состоянии:
практически совпадают

При определении давления грунта на подпорную стенку учет сцепления грунта приводит к:
Уменьшению активного давления грунта

Конструкции, удерживающие от обрушения находящийся за ними грунтовый массив, называются:
Ограждающими

Давление грунта, препятствующее смещению подпорной стенки, называется:
Пассивным

Искусственно созданная поверхность, ограничивающая природный грунтовый массив, выемку или насыпь, называется:
Откосом

Образованная природным путем поверхность, ограничивающая массив грунта естественного сложения, называется:
Склоном

Потеря устойчивости массива грунта и переход его в состояние движения называется:
Оползнем

По характеру работы ограждающие конструкции подразделяются:
на жесткие и гибкие

Подпорные стенки по конструктивному исполнению разделяют на:
массивные и тонкостенные

При смещении подпорной стенки возникает призма:
Обрушения

Одним из направлений повышения устойчивости сооружений, откосов и склонов является:
уменьшение активных воздействий на сооружение

Граница области обрушения грунта называется поверхностью:
Скольжения

Метод кругоцилиндрических поверхностей скольжения применяется для расчета:
устойчивости откосов и склонов

Смещение подпорной стенки возможно в результате действия:
активного давления грунта

Для определения активного и пассивного давления грунта на сооружение обычно применяют модель теории:
предельного равновесия

При смещении подпорной стенки со стороны засыпки образуется призма:
выпирания

Одним из направлений повышения устойчивости сооружений, откосов и склонов является:
увеличение реактивных сил сопротивления грунта сдвигу

Одной из причин потери устойчивости откосов и склонов является:
увеличение внешней нагрузки

Модуль 1 — Общие деформации грунта рассматривает:
теория фильтрационной консолидации — правильный ответ — теория линейного деформирования грунта.

Газовая составляющая грунта может быть представлена:
атмосферным воздухом — правильный ответ — свободным газом в порах и газом, растворенным в воде

Добавлено через 26 минут
модуль 2 -По какой из формул определяется консистенция грунта?
Wn = Wt – Wp — правильный ответ IL=(W-wp)/Wt-Wp)

Монолит грунта – это:
уплотненный грунт с созданием монолитной структуры — парвильный ответ — образец грунта с нарушенным или ненарушенным сложением

Добавлено через 17 часов 37 минут
модуль 4 — Напряжения при действии любой распределенной нагрузки определяются по методу:
элементарного суммирования — правильный ответ — элементарных квадратов

При определенных допущениях решения теории упругости применимы в фазе:
упругих деформаций и выпора — правильный ответ — упругих деформаций и уплотнения

Грунт находящийся ниже уровня грунтовых вод испытывает:
Все ответы верны- правильный ответ — взвешивающее действие воды

МОДУЛЬ 5
Неравномерные осадки в период эксплуатации могут вызываться:
изменением положения уровня грунтовых вод, динамическими воздействиями
— правильный ответ — неоднородным напластованием грунта, неодинаковым загружением фундаментов

Дополнительные вертикальные напряжения от нагрузки определяются по методу:
эквивалентного слоя
— правильный ответ — угловых точек

Что такое откосы и стенки котлована, какие бывают виды и назначение?

Стены и откосы несут очень важную функцию для котлована – не дают ему осыпаться. При рытье нельзя разрыхлять поверхность дна и стенок. При повреждении целостности породы она становится более сыпучей.

Поэтому во время рытья котлована ковшом недобирают часть грунта до заданной отметки.

Обработку дна и стенок до необходимой отметки проводят вручную.Земляные работы проводятся как полностью вручную для мелких сооружений, так и с использованием техники для более крупных проектов.

Понятие

Стены котлована — это его боковые стороны, образующие периметр выемки. Откосами называются наклонённые под заданным углом стены. В зависимости от типа грунта и от того, в каких условиях проводятся работы, определяются с тем какие стенки должны быть у котлована, вертикальные или же необходимо задание определённого уклона.

Наклон позволяет рыть более глубокие ямы, без опасности обрушения. В процессе работ следует убирать крупные камни для предотвращения возможности оползней.

Нормы проектирования

Данный вид работ — важное и сложное мероприятие, которое регламентируют СП и СнИПы, такие как:

    ; ;
  • СНиП 12-04-2002; ; .

Условия, которые нужно знать:

  • разновидность грунта;
  • глубина;
  • находящиеся рядом объекты;
  • предполагаемая нагрузка от построек;
  • уровень грунтовых вод.

Разновидности

Стенки различаются, они могут быть как природные без укрепления, так и с укреплением. При их выборе нужно учитывать много параметров. Они бывают вертикальные, наклонные и укреплённые.

Вертикальные

Такие стенки перпендикулярны по отношению к горизонту. По СНиП 12-04-2002 для сухих и невлажных грунтов с однородной структурой, возможно использование вертикальных стенок.

Ограничение по глубине:

  • гравийные – 1,0 м;
  • песчаные – 1,0 м;
  • супесь – 1,25 м;
  • глина – 1,5 м;
  • суглинок – 1,5 м;
  • сильно плотные – 2,0 м.

Если температура на улице не выше -2 градусов, возможно увеличение максимальной глубины вертикальных стенок, на величину равную глубине промерзания, но не более 2 метров.

Наклонные

Также они называются откосами, и используются при выемках в среднем от 1,25 метра, в которых использование вертикальных становится опасным. Обрушение может привести к засыпанию дна котлована и изменению его формы.

Кроме того, это может привести к несчастному случаю. На восстановление последствий от возможного обрушения придётся тратить силы, время и деньги на очистку основания, восстановления исходного контура и обратную засыпку грунта. Сооружение фундамента в котлованах без укрепления рекомендуется начинать сразу после выемки грунта.

Во влажных породах, возможно образование трещин и отслоений, поэтому работу можно выполнять только после осмотра стенок котлована. По периметру котлована должно оставаться свободное место, не менее 0,6 метра, для того чтобы вынутая земля не скатывалась обратно.

Укреплённые

Стенки котлована подвержены воздействию различных погодных явлений и механических нагрузок, что может негативно сказаться на их устойчивости. Наклон помогает избежать обрушения стенок, но они далеко не всегда способны справиться с этой задачей.

Читайте так же:
Для чего нужен грунт перед поклейкой обоев

Кроме того, в городских условиях с плотной застройкой не всегда получится обеспечить достаточную крутизну котлована. Поэтому стенки котлованов большой глубины и в сыпучих средах, рекомендуется укреплять.

Способы укрепления:

  • Цементирование;
  • Укрепление Шпунтом;
  • Стена в грунте.

Цементирование применяют в городской среде. При таком методе исключается повреждение фундамента, вызванное вибрациями от соседних зданий. Этот метод очень надёжен, но достаточно дорог.

Сначала роется выемка, затем по периметру монтируется сетка из арматуры для лучшей фиксации бетона. После чего на стенки наносится первый слой раствора. Затем бурят горизонтальные скважины и заполняют их цементом. После высыхания первого слоя наносят последующие слои.

При заливке используются два метода:

  • Сухой. Смесь, состоящая из цемента с добавлением песка при помощи воздуха, подаётся в шланг, а вода подмешивается только на выходе из него. Таким методом слой заливки может достигать 10 см.
  • Мокрый. В этом способе применяется уже готовый раствор, в который на выходе из шланга подаётся воздух и разбрызгивает бетон. Толщина заливки при этом методе не более 3 см.

Возведённые во время укрепления стенок конструкции должны воспринимать нагрузку от грунта, и защищать от грунтовых вод.

Укрепление с помощью шпунта — более экономичный метод, чем заливка цементом. Такой метод может использоваться в сыпучих, ослабленных и влажных породах. Перед началом работ в землю погружается шпунт, который укрепляет будущие стены.

После защиты периметра приступают к рытью котлована. Возможно повторное использование шпунта, для этого после окончания работ, его изымают из земли, увозят и применяют уже на других объектах.

В строительстве используют 3 вида шпунта:

  • Шпунтовые трубы — один из самых дешёвых методов. Металлические трубы забивают, вдавливают или вкручивают в землю до проектной отметки. После установки всех труб и вырытого котлована, стенки можно дополнительно укрепить забиркой — деревянными щитами, которые крепятся между трубами, не позволяя грунту осыпаться. В плотных породах можно уменьшить количество труб и заполнить пространство между ними забиркой, тем самым экономя силы и ресурсы на их забивку.
  • Плоский шпунт — это металлический профиль с пазами на краях. Благодаря которым детали прочно скрепляются между собой и успешно выдерживают нагрузку.
  • Шпунт Ларсена – это доработанная версия плоского шпунта, только выполнен он в виде буквы U с замками на краях. Благодаря своей форме и строению замков, может выдерживать большие нагрузки и обеспечивать полную водонепроницаемость. Важно делать работу аккуратно, и надёжно стыковать между собой детали, не деформируя сталь и замки.

Шпунт Ларсена применяется, если есть риск затопления котлована.

  • Забивка — осуществляется при помощи механического молота. Не применяется в городе, чтобы не нанести вред фундаментам соседних зданий.
  • Вибропогружение — основано на использовании вибрации, чтобы уменьшит плотность грунта и обеспечить погружение конструкции в почву. Подходит для песчаных и илистых грунтов, но не подходит для прочных грунтов.
  • Статическое вдавливание — самый безопасный и технологичный метод. Используются машины, которые вдавливают шпунт в почву. Данный метод менее шумный чем остальные, он не издаёт вибраций и применим практически во всех условиях, будь то город или скальные породы.

Шпунтовую стену можно укрепить распорками или анкерами.

Использование технологии “Стена в грунте” возможна лишь при наличии специальной техники. Грейферная установка – машина способная создавать глубокие вертикальные шахты. Изначально в шахту подаётся бентонитовый раствор, который защищает шахту от обвала.

После того как заданная глубина достигнута, в ствол помещают армированный каркас и заливают бетоном. Метод не может применяться в рыхлых, текучих, плывунных и скальных грунтах.

Сразу же после укрепления стен любым из методов проводится обратная засыпка, которая предотвращает разрушение фундамента из-за попадания влаги.

Основанием для выбора того, какие стены использовать (вертикальные, наклонные или защищённые) является глубина, порода, грунтовые воды и погодные условия. Для маленькой выемки, вполне можно обойтись вертикальными стенами.

Для более глубоких котлованов уже необходимо использование определённых откосов. Ну а если нужно подготовить фундамент для большого строения, то без использования укреплений не обойтись.

Крутизна и угол откоса

Крутизна откоса показывает отношение высоты ямы к её заложению. Угол откоса – это угол между основанием котлована и его наклонной стеной.

Наклон бывает естественными. Угол таких откосов — это отношение рыхлой породы, лежащей на поверхности ко дну ямы.

По этому параметру и определяется прочность почвы, благодаря которому и подбирают угол наклона.

Определение угла

Для создания правильного наклона, который сможет защитить стенки от обрушения необходимо правильно подобрать его угол.

Величина крутизны откосов для выемок не более 5 метров подбирается на стадии проектирования по таблице 4 из СНиП III-4-80.

Для определения наибольшего возможного угла естественного откоса также существуют таблицы. Они разные для нормального и разрыхлённого состояния.

В таблице углы естественного откоса грунтов:

Уклон углов естественного откоса пород в разрыхлённом состоянии по СНиП:

Если грунт неоднороден, а сочетает в себе различные типы, то угол выбирают по наиболее сыпучему. Если выемка глубже 5 метров, то требуется создание проекта. Также он нужен для выемок глубже 1 метра, вырытых в грунтах, отсутствующих в таблице, по которой подбираются возможные углы.

На чертеже схема котлована с откосами:

Заключение

Основанием для выбора какие стены использовать (вертикальные, наклонные или защищённые) является глубина котлована, тип грунта, уровень грунтовых вод и погодные условия. Для маленькой выемки глубиной 1 – 2 метра вполне можно обойтись вертикальными стенами.

Для более глубоких ям применяются откосы. Ну а если нужно подготовить фундамент для большого строения, то без использования укреплённых стенок не обойтись.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector