88889.ru

Отделка плиткой и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Паропроницаемость штукатурки — важный параметр при выборе

Паропроницаемость штукатурки — важный параметр при выборе

Выбор материала для оштукатуривания стен – дело ответственное. Он находится в прямой зависимости от того, из чего возведены стены и как решён или будет решаться вопрос утепления. Штукатурная система (последовательно нанесённые слои штукатурки и основание под них) участвует в парообмене помещение – улица. Паропроницаемость – один из основных показателей качества затвердевшего штукатурного раствора: таково указание ГОСТа для сухих строительных смесей.

Плотные окна и двери, слабая приточно-вытяжная вентиляция в большинстве домов создают условия для повышенной влажности. Молекулы воды проникают через стены в обоих направлениях, и первая преграда для влаги – штукатурка. Толщина этого слоя невелика, но не учитывать его при расчётах паропроницаемости и теплопроводности стен нельзя.

Основой для выбора штукатурки служит такое правило: паропроницаемость стенового материала (внутренней отделки, самой стены, утеплителя и декоративной отделки снаружи) должна быть минимальной внутри и увеличиваться с каждым слоем. Наружный слой всегда самый паропроницаемый.

Стеновой «пирог» будет нормально функционировать, если его наружный слой будет иметь паропроницаемость в 5 раз большую, чем штукатурная система. Понятно, что штукатурка для внутренних стен и стен наружных обладает противоположными паропроницающими характеристиками. Вот некоторые коэффициенты паропроницаемости в мг/(мчПа)

  • Стекло – 0
  • Пенополистирол экструдированный – 0,005-0,013.
  • Штукатурка из цементно-песчаной смеси – 0,09.
  • Штукатурка цементно-известково-песчаная – 0,098.
  • Штукатурка известково-песчаная – 0,12.
  • Кирпич полнотелый глиняный и силикатный в кладке – 0,11.
  • Пенобетон и газобетон блочный, плотностью 1000 кг/м3 – 0,11.
  • Каменная минеральная вата (75-85 кг/м3) – 0,5.

Из перечисленных минеральных штукатурок раствор на основе извести – самый подходящий для внутренних стен. Именно так поштукатурены стены 90% домов страны.

Особое внимание к этому коэффициенту стали проявлять в связи с массовым применением изделий из ячеистых бетонов: газоблоков. Этот материал в готовом сооружении требует ограничения доступа атмосферного воздуха. Иначе влажностная и карбонизационная усадка приведут к появлению трещин, вплоть до разрушения здания.

Легкодоступная защита блоков – оштукатуривание: но купить штукатурку в Санкт-Петербурге у фирмы ООО "Север-М" (она называется «плитонит») — половина дела. Неграмотным нанесением штукатурного слоя можно вообще прекратить парообмен. Влага будет скапливаться в блоках, стены отсыреют…

Толщину такого слоя определяет конкретный теплотехнический расчёт. Если расчёт отсутствует, то корректной будет такая рекомендация: внутренний слой штукатурки должен быть в два раза толще наружного. Кладка из газоблоков обязана быть идеально ровной, поэтому внутри толщина штукатурки обычно не превышает 10-20 мм. 5-10 мм снаружи обеспечат нормальный парообмен.

Грамотным решением будет использование для фасада силикатной или силиконовой штукатурки. Эти виды обладают повышенной паропропускаемостью. К недостаткам силикатных смесей надо отнести (как и ко всем силикатным материалам) слабую устойчивость к продолжительному воздействию сильных дождей.

Силиконовая штукатурка лишена всех недостатков, кроме высокой стоимости. Она отлично колеруется в массе, обладает великолепной адгезией, не впитывает влагу. Поверхность её очищается от пыли дождевыми струями.Следует также учитывать, что при нанесении нескольких слоёв декоративной или защитной штукатурки нижний слой должен иметь наибольшую паропроницаемость, верхний – наименьшую.

Паропроницаемость стены

Согласно СНиП 23-02-2003 «Тепловая защита зданий» ограждающая конструкция должна не только обеспечивать нормируемое сопротивление теплопередаче, но и не допускать накопления влаги в плоскости возможной конденсации конструкции.

Вода всегда присутствует в воздухе в виде водяного пара. В зависимости от температуры, воздух может вместить большее или меньшее количество этого водяного пара. Чем ниже температура, тем меньше влаги воздух может в себе вместить. Содержание влаги в помещении при температуре 20°С и относительной влажности 55% составляет 9,5 г/м 3 , а зимой на улице при температуре -35°С и относительной влажности 80% уже содержится влаги только 0,2 г/м 3 . Постоянное увеличение содержания влаги в воздухе помещения происходит за счет процессов жизнедеятельности проживающих. Так, семья из трёх человек в сутки выделяет более 5 л водяного пара. Большая часть этого пара удаляется системой вентиляции, но часть по причине разности парциального давления паров воды внутри помещения и на улице стремится выйти через стены. Влага попадает в строительную конструкцию и постепенно движется в сторону с меньшим абсолютным содержанием паров воды в воздухе, т.е. в зимний период влага движется из помещения на улицу, а летом – наоборот. Количество воды, проходящее через стену, определяется коэффициентом паропроницаемости строительного материала, толщиной стены, температурой и влажностью воздуха внутри помещения и снаружи. Например, зимой через кирпичную стену толщиной в 1,5 кирпича, за 1 час выводится более 450 мг влаги на 1 м 2 площади стены.

Читайте так же:
Блочные кирпичи своими руками

Если стена однородна по своему составу, то, сколько пара вошло, – столько же и покинет стену. И ничто не препятствует ему. Если же стена представляет многослойную конструкцию, то водяной пар по мере движения из помещения на улицу на границе двух слоев может остановиться об паронепроницаемый материал. В этой точке пар начнет конденсироваться и выпадать в форме жидкости, что приводит к переувлажнению конструкции, образованию на стенах плесени, грибка, отслаиванию штукатурки, ухудшению теплоизоляционных характеристик, разрушению материалов.

Существует способ не допустить влагу в глубину стены и, тем самым, уберечь материалы от нежелательного увлажнения – это расположить паронепроницаемый слой с внутренней стороны стены.

Паронепроницаемый слой
Пароизоляционный слой не допускает влагу внутрь стены

Такой вариант внутренней пароизоляции вполне допустим при условии качественного выполнения работ по его монтажу. Внутренняя пароизоляция позволяет использовать различные материалы в конструкции слоёв стены, не опасаясь их разрушения под действием диффузионной влаги в стене, правда при условии, что пароизоляционный слой выполнен качественно. При внутренней пароизоляции происходит прекращение вывода части водного пара из помещения за счет диффузии через стену, однако при недостаточной вентиляции это обязательно приведет к конденсации влаги на пароизоляционном слое. Конденсат будет выпадает со стороны помещения вследствие повышенной влажности в помещении, впитывается в отделку и при всегда положительной температуре помещения получается круглогодичный рассадник грибов и плесени. При дополнительной вентиляции и из-за внутренних сквозняков для компенсации температуры комфорта избыточный расход энергии на отопление. Поэтому, данный способ применим только с условием качественно выполненной пароизоляции и подразумевает хорошую вентиляцию и дополнительное отопление.

Рассмотрим вариант конструкции многослойной стены без использования пароизоляционного слоя изнутри помещения. Например, если паропроницаемую кирпичную стену толщиной в 1,5 кирпича утеплить теплоизоляционным материалом в соответствие с требованием СНиП, то зимой к плоскости конденсации, расположенной на границе между кирпичной стеной и теплоизоляционным материалом, каждый час будет поступать до 50 мг влаги на 1 м 2 площади стены. В случае применения паропроницаемого теплоизоляционного материала, эта влага продолжит движение и беспрепятственно выйдет на улицу, т.е. стена будет «дышать». Если же теплоизоляционный материал будет паронепроницаемым, то влага «упрется» в него и начнет накапливаться на границе между стеной и теплоизоляцией. Это приведет к сильному увлажнению материалов стены, снижению теплоизоляционных характеристик, постепенному разрушению конструкции.

Стена паропроницаемая
Диффузия паров жидкости через несущую стену и паропроницаемый теплоизоляционный материал на улицу

Стена пароНЕпроницаемая
Пары воды, пройдя через паропроницаемую несущую стену, упираются в паронепроницаемый слой теплоизоляционного материала

Но возможен и промежуточный вариант, когда паропроницаемость слоев уменьшается по мере удаления от внутренней поверхности.

Стена частично паропроницаемая
Низкая паропроницаемость теплоизоляционного слоя замедляет отвод влаги из стены

В этом случае, влага, проходя через хорошо паропроницаемый слой, упирается в слой с низкой паропроницаемостью и влага начинает скапливаться на границе слоёв. Именно по пути создания наименьшего сопротивления движению водяных паров из помещения наружу должны выбираться материалы в многослойной конструкции стены. Согласно пособию 2.04.01-96 к СНБ 2.01.01-93 «Теплотехнический расчет ограждающих конструкций» материалы с более высокими коэффициентами теплопроводности и теплоусвоения и более низким коэффициентом паропроницаемости целесообразно располагать в конструкции со стороны помещения, а материалы с более низкими коэффициентами теплопроводности и теплоусвоения и более высоким коэффициентом паропроницаемости – с наружной стороны.

Следует отметить, что в случае диффузии влаги через стену, возможны такие условия, при которых влага, на пути из помещения на улицу может конденсироваться в толщине стены (обычно на границе с теплоизоляционным материалом). В большинстве случаев, такая конденсация происходит только в особенно сильные морозы, и при потеплении влага из точки конденсации выводится наружу. Необходимо только использовать такие теплоизоляционные материалы, которые не разрушаются под действием влаги.

Читайте так же:
Кирпич керамический курпо 1 4нф

Таким образом, наиболее простой и надежный вариант многослойной стены включает использование паропроницаемых материалов, с расположением слоёв конструкции с возрастающей паропроницаемостью от внутренней поверхности к наружной. Необходимо только использовать такие материалы, которые не разрушаются под воздействием внешних факторов. Главное требование к теплоизоляционным материалам, расположенным в многослойных конструкциях, является их долговечность, так как в данном случае ремонтно-восстановительные работы невозможны. Такие материалы не должны разрушаться и терять свои характеристики при повышенных температурах, иметь высокую влагостойкость, устойчивость к деформации.

Пеностекло, в отличие от других теплоизоляционных материалов, является уникальным теплоизоляционным материалом по комплексу свойств. При высоких теплоизоляционных свойствах, пеностекло не горит, устойчиво к нагреванию и агрессивным химическим средам, влагостойко, долговечно, морозоустойчиво, экологически безопасно. Коэффициент паропроницаемости засыпки из пеностекольного гравия превосходит коэффициенты паропроницаемости конструкционных материалов и составляет не менее 0.2 мг/(м•ч•Па), что позволяет утверждать, что теплоизоляционный слой из пеностекольного гравия не будет являться барьером на пути влаги из помещения на улицу.

Паропроницаемость каркасного дома:

Неправильная пароизоляция

При строительстве каркасного дома многие задаются вопросами: как правильно сделать пароизоляцию? Нужны ли вентзазоры, и как их организовать? В сети даже есть калькуляторы, которые якобы способны онлайн рассчитать правильный пирог стены.

Итак, правильный каркасный дом, как, впрочем, любой энергоэффективный дом, должен быть непродуваемым. В связи с этим многие называют каркасные дома «недышащими». Отчасти это верно, но скажите, разве в доме с бетонными стенами воздух проникает через поры в бетоне? По-моему, термин «дом-термос» как и выражение «стены дышат» — это в одинаковой степени спекуляция или маркетинг. Если стены будут пропускать воздух, то обеспечат вас лишь сквозняками. И выражение «стены дышат», подразумевает поглощение и отдачу некоторого количества влаги, но никак не перемещение воздуха извне внутрь помещения.

Всякий энергоэффективный дом – это термос, и свежий воздух в нем, это забота вентиляции или открытого окна, а никак не пор в стенах с неограниченным хаотичным притоком холодного воздуха. Это первый миф.

Как говорилось выше, идеальный дом, это дом-термос, и каркасный дом, ввиду особенностей технологии, наверное, в этом преуспел больше других. От этого он лидирует сразу в нескольких номинациях:
1. Самый недорогой дом
2. Самый тёплый дом
3. Самый быстрый дом в стройке с отделкой
5. Самый энергоэффективный

Этот перечень можно продолжать и дальше.

Основа тёплого и качественного каркасного дома — пароизоляция!

Очень часто на форумах и в письмах приходится отвечать на вопрос: почему в наших проектах технология подразумевает отделку дома снаружи плитами осб, ведь они не пропускают пар? И сразу же находятся те, кто советует делать вентзазор. Правда они забывают о том, что осб в каркасном доме это элемент пространственной жёсткости каркаса и его крепление через вентзазор не в полной мере добавляет жёсткости, как это должно быть по нормам и правилам. В то же время те же советчики сетуют на то, что нормы нарушать нельзя. Любые прокладки уменьшают жёсткость и делают соединение более шарнирным, что неправильно, так как в каркасе и так все соединения по нормам проектирования шарнирные. Позже я объясню, что такое вентзазор и как он выветривает тепло из утеплителя и дома.

Осб плита в отличии от марли, наверное, не такая паропроницаемая. Это хорошо или плохо? Хорошо, так как она является отличной преградой для выветривания тепла, и плохого ничего нет, так как осб паропроницаема настолько, насколько пара может содержаться в конструкции при хорошо сделанной пароизоляции. Когда меня спрашивают: как пройдёт пар через осб? Я всегда задаю встречный вопрос: а сколько влаги превращенной в пар вы хотите выветрить через осб? Если это количество равно ложке в день на 2-3м/кв. стены, то пройдёт и более, а если это литры или ведра, то с этим уже не справится даже мембрана и стандартный вентзазор. У любого материала есть предел, поэтому основная задача — бороться не с последствиями, а с причиной попадания пара в конструкцию. Проще и эффективнее пар не пускать, чем потом решать, как его выветрить и не дать сконденсироваться.

Читайте так же:
Калорийность белого хлеба кирпич

Для обеспечения пароизоляции в продаже есть пароизоляционные плёнки и мембраны, и если вы сильно переживаете что пар может все же проникнуть в утеплитель, то необходимо тщательно и скрупулезно сделать паробарьер. Для этого необходимо учесть некоторые нюансы: во-первых, пароизоляцию надо начинать сверху и идти вниз, нижний слой пароизоляции должен обязательно перекрывать верхний как минимум на 30см, в идеале с проклейкой бутиловой лентой; во-вторых, делать пароизоляцию таким образом, чтобы она потом не была повреждена коммуникациями. Например, мы в наших проектах делаем двойную пароизоляцию с зазором, или с зазором заполненным ватой для дополнительного утепления.

По технологии каркасного строительства Кнауф, в случае полной отделки дома внутри ГКЛ, можно вообще не использовать плёнки пароизоляции, так как ГКЛ по нормам ещё менее паропроницаем чем любая пароизоляция, причём в разы. Сейчас в продаже появились панели типа Изоплат, которые якобы сильно паропроницаемы, но для временной отделки снаружи дома они покрыты парафином, что как понятно не делает панели в полной мере паропроницаемым материалом, а скорее только является рекламным и маркетинговым ходом. Это второй миф.

Далее, чтобы не быть голословным, хочу представить расчеты и картинки

Паропроницаемость нового листа осб от именитого производителя не менее 0,004 мг/м*ч*Па (со слов интернета). От нашего производителя скорее всего больше вдвое, что отчасти лучше. Однако во время эксплуатации, OSB лист подвергается действию влажности, высоких и низких температур. Клейковина дерева разрушается, ОСБ становится толще, от чего между щепой открываются капиллярные каналы и паропроницаемость может увеличиться в несколько раз — до 0,06-0,1 мг/м*ч*Па, что сравнимо с паропроницаемостью того же Изоплат или Tyvek® Housewrap — ветро- влагозащитная паропроницаемая мембрана. Сопротивление паропроницанию (ГОСТ 25898-83) 0,07 м2чПа/мг. То есть со временем ОСБ становится ещё более подходящим материалом: паропроницаем, жёсткий и защищает утеплитель от выветривания тепла из него.

Вентзазор, только вентзазор с открытым входом и выходом воздуха, можно назвать вентзазором. Он обязателен на скатной или плоской кровле, для выветривания влажности, которая выходит из дома через неплотности пароизоляции, через утеплитель и ветро-влагозащитную мембрану в подкровельное пространство. Вентзазор нужен на вентилируемом фасаде для тех же целей, а вот в доме между ГКЛ и ватой, или между ГКЛ и пароизоляцией уже получается не вентзазор, а воздушный мешок, как между двух или трёх стёкол в стеклопакете. По нашему мнению от него нет большого толка, так как влага оттуда скорее всего не выветрится по понятным причинам, а при огромном количестве от неправильной эксплуатации дома, может просто стекать ручейками под дом. Поэтому в наших проектах мы зачастую данный «вентзазор» заполняем ватой, тем самым отодвигая точку росы от внутренней отделки глубже в сторону улицы, чем теплее уличная стена (отделка и пароизоляция), тем меньше вероятность конденсации влаги на ней, да и данный метод уменьшает мостики холода (стойки каркаса).

Теперь давайте рассмотрим что мы имеем по калькуляторам онлайн в сети.

Картинка 1. Казалось бы ОСБ закрывает выход влаги из дома, но мы имеем чуть большую теплозащиту дома, так как любой уличный вентзазор охлаждает дом и из-за этого возрастают теплопотери, поэтому не стоит усердствовать с вентзазорами. При использовании вентзазора, картинка 3 и 4, мы имеем большие теплопотери, и ещё калькулятор на картинках 2, 3, 4 рассчитал почти идентичные данные с ветрозащитой и без неё, что странно и неправильно, но попробую объяснить почему. На самом деле всё очень просто – ветрозащита служит для предотвращения выдувания тепла из утеплителя. Попробуйте одеть свитер, выйти зимой на ветер и постоять. Через совсем непродолжительное время вам станет холодно, но стоит поверх свитера одеть тонкую ветровку, как и более сильный ветер не сможет вас охладить или заморозить. В данном случае мы ожидали в калькуляторе такие же данные, но увы, онлайн расчёт подвёл и в этот раз. При коэффициенте потерь в 1%, можно было бы вообще не тратиться на ветро-влагозащиту, которая препятствует выходу влаги из конструкций.

Читайте так же:
Облицовка камина пустотелым кирпичом

Если ещё внимательнее посмотреть на расчёт, то можно заметить, что по каким-то магическим причинам точка росы не ушла из конструкции, а просто опустилась на пять градусов вниз. Данному сдвигу тяжело дать объяснение, да ещё и «пирог» стены стал менее энергоэффективным.

Расчёт пирога каркасной стены Расчёт пирога каркасной стены Расчёт пирога каркасной стены Расчёт пирога каркасной стены

Подобный калькулятор есть еще на одном сайте (см. таблицу ниже), там всё ещё интереснее: есть пункт в котором нас спрашивают, куда деваться воде в размере 23,29 гр/м2/ч, которая якобы будет в конструкции? Давайте попробуем разобраться, что это за цифра 23,29 грамм на м2 уличной стены в час. В среднем фасад дома 8х10 в 1,5этажа будет 160м2 (без окон и дверей) 160*23,29=3 726,4гр в час, умножим на сутки (24ч) = 89,43литра воды, если прибавить крышу, то калькулятор говорит, что в конструкциях будет за сутки более 130л воды. Вопрос — это что надо делать в доме, чтобы испарять в нём за сутки целую ванну или бочку воды, с учетом того, что в доме должна быть вентиляция и она должна забирать до 80% влаги? По крайней мере в городской квартире именно так, в отопительный период, когда влага может попадать в конструкции влажность воздуха в доме не более 20%.

Расчёт пирога каркасной стены Расчёт пирога каркасной стены

Приведенные выше таблицы паропроницаемости несколько условны. Образование точки росы рассчитывается довольно точно, зная материалы и толщину слоев стены, влажность и температуру внутри и снаружи, но проблема в том, что данные условия могут не наступить в виду погодных и атмосферных явлений, поэтому к сожалению, при расчётах всегда берутся усреднённые данные.

Не стоит очень сильно бояться точки росы. Важно РЕАЛЬНОЕ возможное количество выпавшего в стене конденсата, а также важны свойства всего «пирога» стены. Пирог стены может иметь слабое водопоглощение и соответственно иметь меньше шансов разрушиться от замёрзшей расширяющейся влаги. Если по расчётам в очень сильные морозы в стене выпадет небольшое количество конденсата, то он потом выйдет, когда эти сильные морозы отступят.

Вот к примеру, в России после ВОВ построено огромное количество кирпичных домов с толщиной стены в полметра. По всем расчётам теплотехнических калькуляторов, холодной зимой в стенах этих зданий выпадает конденсат в огромном количестве. Но здания стоят уже больше полвека и стены не рушатся! Просто морозы имеют свойство отступать, и конденсат выходит, плюс водопоглощение и морозостойкость у кирпича очень хорошие, поэтому ничего страшного обычно не происходит.

Я не говорю, что это ерунда и что не нужно думать о паропроницаемости строительных материалов, точке росы и конденсате. Наоборот, думать нужно, точка росы в стене — это риск, но это данность, точка росы будет всегда в стене, главное, чтобы в этой точке не накапливалась влага, а свободно проходила её и выветривалась. Но тут возникает ещё одно условие, невозможно выветрить всю влагу, у всего есть предел, и тут возвращаемся в начало статьи: важно не бороться с причиной, а постараться избежать попадания влаги в конструкцию. А на сколько она опасна это уже зависит от климата внутри и снаружи и свойств стенового материала.

Влагонакопление стены рассчитывается по СП 50.13330.2012. Незначительное влагонакопление в стене зимой, не превышающее нормы по защите от переувлажнения, не наносит существенного вреда стенам. Хотя, конечно, желательно вообще избежать влаги внутри стены в зимнее время. Как упоминалось выше, стены с хорошей паропроницаемостью люди в быту часто называют «дышащими». Это очень спорное достоинство, основная влага из помещения должна удаляться через хорошо работающую вентиляцию. Влага, идущая через стены, фактически только вредит им, сокращая срок службы и увеличивая теплопотери.

Как пример, в самом начале статьи есть картинка необычного, симпатичного домика, заказчик хвастал, что потратил на него 4,5млн, но мы видим, что на чёрной ветро-влагозащите лежит иней, защита промёрзла, и больше не может выполнять вывод влаги из дома. Это всё ведёт к тому, что, конденсат начинает выпадать в утеплителе и в толще, утепленной им стены, из-за неправильно или некачественно сделанной пароизоляции.

Читайте так же:
Монтаж кабеля по кирпичу

Таким образом мы плавно перешли к вопросу: спасёт ли вентзазор, при плохо или неправильно сделанной пароизоляции в доме? Ответ – спасёт. Но, к сожалению, ненадолго, и вот почему: как показала практика конденсат выходит до тех пор, пока на пароизоляции или внешнем слое утеплителя не появиться лёд, который будет препятствовать её выходу.

Данный эффект хорошо виден на бороде и одежде людей на фото ниже. Судя по большим участкам открытых лиц и одежде, температура при которой конденсат осел в виде льда не сильно низкая, примерно минус 15-20С. Такая температура достаточно распространена зимой на большей части России, где строят дома по подобной технологии.

Это говорит о том, что ни один вентзазор, ни одна паропроницаемая мембрана не сможет выветрить большое количество влаги в виду её обледенения. Данные фото доказывают, что даже если вы оставите дом с открытой ватой без отделки (якобы ОСБ тормозит выход влаги), то при большом влагопереносе, верхний слой ваты покроется инеем и дальнейшее влагонакопление и промерзание ваты приведёт к тому что вся вата превратиться в кусок льда. Поэтому основное, как уже упоминалось выше, это хорошая пароизоляция (правильно смонтированная и без повреждений), которая сможет обеспечить сухость в конструкциях стен вкупе с вентиляцией.

Как выбрать экологичные керамические блоки и кирпичи

К выбору материала для строительства собственного дома необходимо отнестись ответственно. Ведь на современном рынке строительной продукции много подделок и просто некачественных товаров. Керамические блоки и кирпичи — популярный материал, который используется при строительстве зданий и в этой статье мы расскажем, как выбрать экологичную и качественную керамическую продукцию.

Изучите сайт производителя

Долговечность строительного материала — важная составляющая экологичности: чем дольше прослужит здание, тем меньше отходов будет образовано. Чем качественнее и долговечнее будет продукция, тем меньше материалов потребуется для ремонта.

Ищите технические характеристики продукта на сайте производителя в разделе «Техническая документация».

Обратите внимание на следующие показатели:

Теплопроводность λв ниже 0,150 Вт/м°С

Низкая теплопроводность позволит возвести стены без утепления, тем самым сократив количество материалов, которые используются для строительства. Теплопроводность указывается в трёх значениях: λ0, λa и λв. Нулевой показатель — это теплопроводность материала в сухом состоянии, А и B — это режимы эксплуатации. Для Московского региона при расчёте коэффициента термического сопротивления используется значение λв.

Сопротивление теплопередаче, Ro, м²*С/В

Параметр показывает теплозащитные свойства конструкции — чем сопротивление теплопередачи выше, тем лучше. Для Москвы требуемые значения Ro — не ниже 2,99 м²*С/В. Эти расчёты производит архитектор при создании конструкции здания. Их можно и самостоятельно рассчитать по формуле, с помощью специальных программ или даже мобильного приложения. Крупные производители уже предлагают своим клиентам такие сервисы.

Выбор энергоэффективного материала позволит сократить расходы на отопление и кондиционирование дома — вы сэкономите как личные финансы, так и природные ресурсы.

Коэффициент паропроницаемости

Паропроницаемость влияет на микроклимат в помещении, а также на долговечность конструкции кладки. У керамических блоков этот показатель оптимальный — 0,14. Чем более паропроницаемый материал, тем сложнее будет подобрать облицовочные материалы и штукатурку. Керамические блоки имеют одинаковую паропроницаемость с керамическим кирпичом, поэтому такие стены можно возводить без устройства вентилируемого зазора, вплотную, с заполнением шва раствором. Это делает стену монолитной с точки зрения теплотехнических качеств и позволяет влаге легко испаряться.

Морозостойкость

Этот параметр влияет на долговечность стен дома. По ГОСТу он должен быть не ниже F50 — 50 полных циклов водопоглощения, оттаивания и замораживания. Такая морозостойкость в реальных условиях эксплуатации гарантирует не менее 100 лет долговечности здания.

Усадка при высыхании, мм/м

Наличие усадки влияет на появление трещин на отделочных слоях, приводит к снижению прочности стен. Керамические блоки имеют отпускную влажность

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector