88889.ru

Отделка плиткой и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Силикатный кирпич

Силикатный кирпич

Силикатные кирпичи состоят из смеси песка (около 90%), извести (около 10%), а также добавок. Они применяются для кладки каменных и армокаменных наружных и внутренних стен зданий и сооружений, а также для облицовки. Силикатный кирпич не используется для стен в условиях повышенной влажности, поскольку хорошо впитывает влагу, а также для кладок, подвергающихся воздействию высоких температур, так как при высокой температуре происходит разложение гидратных составляющих кирпича. Силикатный кирпич характеризуется высокими механической прочностью и теплопроводностью (выше, чем керамический). По прочности силикатные изделия изготавливают следующих марок: 75, 100, 125, 150, 250, 300.

В зависимости от средней плотности полнотелые изделия подразделяют на пористые со средней плотностью до 1500 кг/м 3 и плотные — свыше 1500 кг/м 3 .

Как и керамический кирпич, силикатные изготавливают лицевыми и рядовыми. Лицевые изделия выпускаются гладкими, как неокрашенными (имеющими цвет сырья, из которого они изготовлены), так и окрашенными в массе или с поверхностной окраской лицевых граней.

Свойства силикатного кирпича

Прочность при сжатии и изгибе

Марка кирпича определяется его средним пределом прочности при сжатии, который составляет обычно 7,5-35 МПа. В стандартах ряда стран (Россия, Канада, США) наряду с этим также регламентируют предел прочности кирпича при изгибе. Пустотелые камни средней плотностью 1000 и 1200 кг/м 3 могут иметь марки 50 и 25. В большинстве стандартов предусмотрено определение прочности кирпича в воздушно-сухом состоянии.

В стандартах приведены средняя прочность кирпича данной марки и минимальные значения предела прочности отдельных кирпичей пробы, составляющие 75-80% среднего значения.

Водопоглощение — один из важных показателей качества силикатного кирпича и является функцией его пористости, которая зависит от зернового состава смеси, ее формовочной влажности, удельного давления при уплотнении. Водопоглощение силикатного кирпича должно быть не менее 6%.

При насыщении водой его прочность снижается по сравнению с прочностью в воздушно-сухом состоянии так же, как и у других строительных материалов. Коэффициент размягчения силикатного кирпича зависит от его макроструктуры, микроструктуры цементирующего вещества и составляет обычно не менее 0,8.

Морозостойкость

Морозостойкость кирпича, особенно лицевого, является наряду с прочностью важнейшим показателем его долговечности. По ГОСТ 379-79 установлены четыре марки кирпича по морозостойкости. Морозостойкость рядового кирпича должна составлять не менее 15 циклов замораживания при температуре -15°С и оттаивания в воде при температуре 15-20°С, а лицевого -25, 35, 50 циклов в зависимости от климатического пояса, частей и категорий зданий, в которых его применяют.

Снижение прочности после испытания на морозостойкость по сравнению с водонасыщенными контрольными образцами не должно превышать 20% для лицевого и 35% для рядового кирпича первой категории и соответственно 15 и 20% для кирпича высшей категории качества.

Требования по морозостойкости к кирпичу марок 150 и выше предъявляются только в том случае, если его применяют для облицовки зданий. При этом кирпич должен пройти 25 циклов испытаний без снижения прочности более чем на 20%.

Морозостойкость силикатного кирпича зависит в основном от морозостойкости цементирующего вещества, которая в свою очередь определяется его плотностью, микроструктурой и минеральным составом новообразований.

Морозостойкость силикатных образцов зависит от вида гидросиликатов кальция, цементирующих зерна песка (низкоосновных, высокоосновных или их смеси). После 100 циклов испытаний коэффициент морозостойкости образцов, предварительно прошедших испытания на атмосферостойкость, равнялся для низкоосновной связки 0,81, высокоосновной — 1,26 и их смеси — 1,65.

Атмосферостойкость

Под атмосферостойкостью обычно понимают изменение свойств материала в результате воздействия на него комплекса факторов: переменного увлажнения и высушивания, карбонизации, замораживания и оттаивания.

Термографическими и рентгеноскопическими исследованиями установлено, что после испытания образцов в климатической камере заметных изменений в цементирующей связке не отмечается, а после карбонизации гидросиликаты кальция превращаются в карбонаты и гель кремнекислоты, являющиеся стойкими образованиями, цементирующими зерна песка.

Таким образом, можно считать, что силикатный кирпич, изготовленный из песков различного минерального состава с использованием тонкомолотого известково-кремнеземистого вяжущего, является вполне атмосферостойким материалом. Стойкость в воде и агрессивных средах

Стойкость силикатного кирпича определяется степенью взаимодействия цементирующего его вещества с агрессивными средами, так как кварцевый песок стоек к большинству из них. Различают газовые и жидкие среды, в которых стойкость силикатного кирпича зависит от их состава. Из этих данных следует, что силикатный кирпич не стоек против действия кислот, которые разлагают гидросиликаты и карбонаты кальция, цементирующие зерна песка, а также против содержащихся в воздухе агрессивных газов, паров и пыли при относительной влажности воздуха более 65%.

Как правило, коэффициент стойкости образцов, содержащих 5% молотого песка, составляет в грунтовых водах и растворе Ма2504 примерно 0,9, содержащих 1,5% молотого песка — 0,8, тогда как у образцов, в состав которых введено 5% молотой глины, в грунтовой воде и 5%-ном растворе Ма2504 он достигает 0,7. Следовательно, образцы с молотой глиной нельзя признать достаточно стойкими к воздействию агрессивных растворов, а также мягкой и жесткой воды.

Таким образом, силикатный кирпич, в состав которого введено 5% молотого песка, обладает высокой стойкостью к минерализованным грунтовым ведам, за исключением растворов Мд304. Жаростойкость

Опытным путем установлено, что при нагревании шлакового кирпича до 200°С его прочность увеличивается, а при дальнейшем нагревании снижается и при 600°С достигает первоначальной величины. При 800°С она резко снижается вследствие разложения цементирующих кирпич гидросиликатов кальция.

Повышение прочности кирпича при его прокаливании до 200°С сопровождается увеличением содержания растворимой Si02, что свидетельствует о дальнейшем протекании реакции между известью и кремнеземом.

Основываясь на данных исследований и опыте эксплуатации силикатного кирпича в дымоходах и дымовых трубах, разрешается применять силикатный кирпич марки 150 для кладки дымовых каналов в стенах, в том числе от газовых приборов, для разделок, огнезащитной изоляции и облицовки; марки 150 с морозостойкостью Мрз 35- для кладки дымовых труб выше чердачного перекрытия.

Теплопроводность

Теплопроводность сухих силикатных кирпичей и камней колеблется от 0,35 до 0,7 Вт/(м°С) и находится в линейной зависимости от их средней плотности, практически являясь независимой от числа и расположения пустот.

Испытания в климатической камере фрагментов стен, выложенных из силикатных кирпичей и камней различной пустотности, показали, что теплопроводность стен зависит только от плотности последних. Теплоэффективные стены получаются лишь при использовании многопустотных силикатных кирпичей и камней плотностью не выше 1450 кг/м 3 и аккуратном ведении кладки (тонкий слой нежирного раствора плотностью не более 1800 кг/м 3 , не заполняющего пустоты в кирпиче).

Техническая характеристика силикатного кирпича

Требования к техническим свойствам силикатного кирпича меняются в зависимости от области его применения, обычно определяемой строительными нормами, неодинаковыми в разных странах.

Прочность при сжатии и изгибе.

В зависимости от предела прочности на сжатие силикатный кирпич подразделяют на марки 75, 100, 125, 150 и 200.

Читайте так же:
Как упаковывают кирпич пленкой

Марка кирпича определяется его средним пределом прочности при сжатии, который составляет обычно 7,5 — 35 МПа. В стандартах ряда стран (Россия, Канада, США), наряду с этим, также регламентируют предел прочности кирпича при изгибе. Пустотелые камни средней плотностью 1000 и 1200 кг/м3 могут иметь марки 50 и 25. В большинстве стандартов предусмотрено определение прочности кирпича в состоянии и лишь в английском стандарте — в водонасыщенном.

В стандартах приведены средняя прочность кирпича данной марки и минимальные значения предела прочности отдельных кирпичей пробы, составляющие 75 — 80% среднего значения.

Водопоглощение — это один из важных показателей качества силикатного кирпича и является функцией его пористости, которая зависит от зернового состава смеси, её формовочной влажности, удельного давления при уплотнении. По 79 водопоглощение силикатного кирпича должно быть не менее 6%.

При насыщении водой прочность силикатного кирпича снижается по сравнению с его прочностью в состоянии так же, как и у других строительных материалов, и это, снижение обусловлено теми же причинами. Коэффициент размягчения силикатного кирпича при этом зависит от его макроструктуры, от микроструктуры цементирующего вещества и составляет обычно не менее 0,8.

Влагопроводность.

Она характеризуется коэффициентом влагопроводности, который зависит от средней плотности кирпича. При рср., примерно равной 1800 кг/м³, и различной влажности имеет следующие значения:

Таблица 1

W, % [pic]*10,9258111416,518,5
0 — 5, кгм²3,66,98,710,214,53073

Морозостойкость.

В нашей стране морозостойкость кирпича, особенно лицевого, является наряду с прочностью важнейшим показателем его долговечности. По 79 установлены четыре марки кирпича по морозостойкости. Морозостойкость рядового кирпича должна составлять не менее 15 циклов замораживания при температуре — 15 °С и оттаивания в воде при температуре 15 — 20 °С, а лицевого — 25, 35, 50 циклов в зависимости от климатического пояса, частей и категорий зданий, в которых его применяют.

Снижение прочности после испытания на морозостойкость по сравнению с водонасыщенными контрольными образцами не должно превышать 20% для лицевого и 35% для рядового кирпича первой категории и соответственно 15 и 20% для кирпича высшей категории качества.

Требования по морозостойкости к кирпичу марок 150 и выше предъявляются только в том случае, если его применяют для облицовки зданий. При этом кирпич должен пройти 25 циклов испытаний без снижения прочности более чем на 20%. По польскому стандарту силикатный кирпич всех видов должен выдерживать не менее 20 циклов замораживания и оттаивания без признаков разрушения. В стандартах Англии, США и Канады для облицовки наружных частей зданий, подвергающихся увлажнению и замораживанию, предусматривается кирпич повышенной прочности (21 — 35 МПа), но его морозостойкость не нормируется.

Морозостойкость силикатного кирпича зависит в основном от морозостойкости цементирующего вещества, которая в свою очередь определяется его плотностью, микроструктурой и минеральным составом новообразований. По данным П. Г. Комохова, коэффициент морозостойкости цементного камня из прессованного вяжущего автоклавной обработки колеблется после 100 циклов от 0,86 до 0,94. При этом с увеличением удельной поверхности кварца с 1200 до 2500 см²/г коэффициент морозостойкости несколько возрастает, а при дальнейшем увеличении дисперсности кварца он снижается.

В настоящее время в связи с применением механических захватов для съема и укладки сырца в сырьевую широту стали вводить значительно большее количество дисперсных фракций для повышения его плотности и прочности. Вследствие этого в структуре вырабатываемого сейчас силикатного кирпича заметную роль играют уже микрокапилляры, в которых вода не замерзает, чтозначительно повышает его морозостойкость.

Морозостойкость силикатных образцов зависит от вида гидросиликатов кальция., цементирующих зёрна песка (низкоосновных, высокоосновных или их смеси). После 100 циклов испытаний коэффициент морозостойкости образцов, предварительно прошедших испытания на атмосферостойкость, равнялся для низкоосновной связки 0,81, высокоосновной — 1,26 и их смеси — 1,65.

Изучалась также морозостойкость силикатных образцов, изготовленных на основе песков различного минерального состава. Были использованы наиболее распространенные пески: мелкий кварцевый, истый и с примесью 10% каолин итовой или монтмориллонитовой глины, полевошпатовый, смесь 50% полевошпатового и 50% мелкого кварцевого, крупный кварцевый, содержащий до 8% полевых шпатов.

Кремнеземистая часть вяжущего состояла из тех же, но размолотых пород. Соотношения между активной окисью кальция и кремнеземом в вяжущем назначали исходя из расчета получения цементирующей связки с преобладанием низко- или высокоосновных гидросиликатов кальция или их смеси. Количество вяжущего во всех случаях было постоянным. Однако, морозостойкость силикатных образцов после 100 циклов замораживания и оттаивания зависит не только от типа цементирующей связки, но и от минерального состава песка. Влияние минерального состава песка особенно сказывается при наличии связки из низкоосновных гидросиликатов кальция, когда в смесь введено 10% каолин итовой или монтмориллонитовой глины. Коэффициент морозостойкости при этом падает до 0,82. При повышении основности связки коэффициент морозостойкости составов, наоборот, повышается до 1,5, что свидетельствует о продолжающейся реакции между компонентами в процессе испытаний.

Из приведенных данных видно, что хорошо изготовленный силикатный кирпич требуемого состава является достаточно морозостойким материалом.

Атмосферостойкость.

Под атмосферостойкостью обычно понимают изменение свойств материала в результате воздействия на него комплекса факторов: переменного увлажнения и высушивания, карбонизации, замораживания и оттаивания.

Н. Н. Смирнов исследовал микроструктуру свежеизготовленных и пролежавших в кладке 10 лет образцов силикатного кирпича Кореневского, Краснопресненского, Люберецкого и Мытищинского заводов. Он установил, что в общем случае чешуйки новообразований за 10 лет частично замещаются вторичным кальцитом в результате карбонизации гидросиликатов кальция.

Гаррисон и Бесси испытывали в течение многих лет силикатный кирпич разных классов прочности, зарытый в грунт полностью или наполовину, а также лежащий в лотках с водой и на бетонных плитах, уложенных на поверхность земли. Они установили, что внешний вид кирпичей, лежавших 30 лет в земле с дренирующим и не дренирующим грунтом, мало изменился, но их поверхность размягчилась, а у кирпичей, частично зарытых в землю, открытая часть осталась без повреждений, хотя в некоторых случаях поверхность покрылась мхом.

Состояние кирпичей, находившихся 30 лет на бетонных плитах, зависело от их класса. Так, оказались без повреждений или имели незначительные повреждения 95% кирпичей класса 4 — 5 (28 — 35 МПа), 65% кирпичей класса 3 (21 МПа) и 25% кирпичей класса 2 (14 МПа). Все кирпичи класса 1 (7 МПа) имели повреждения уже через 16 лет. Все кирпичи, лежавшие 30 лет на земле в лотках с водой, получили повреждения, и чем ниже класс кирпича, тем раньше они появлялись: у кирпичей класса 1 — через 8 лет, класса 2 — через 19 лет; класса 3 — через 22 года и для классов 4 — 5 — через 30 лет.

Прочность кирпичей, пролежавших в земле 20 лет, уменьшилась примерно, вдвое. При этом наибольшее снижение прочности наблюдалось у кирпичей, находившихся в недренирующем глинистом грунте, а наименьшее — у кирпичей, наполовину зарытых в землю (стоймя). За 20 лет в зависимости от условий пребывания в грунте карбонизировалось 70 — 80% гидросиликатов кальция, причем в основном карбонизация произошла в первые 3 года. Таким образом, даже при таких исключительно жестких испытаниях силикатный кирпич классов 3 и 4 оказался достаточно стойким.

Читайте так же:
Ведьмак сомнительное дело где кирпич

Общеизвестно, что прочность силикатного кирпича после остывания повышается. Именно поэтому по ранее действовавшему ОСТ 5419 предусматривалось определять его прочность не ранее чем через две недели после изготовления. Были проведены испытания кирпича на образцах, отобранных от большого, числа партий (в общей сложности 3 млн. шт.). По 10 кирпичей из каждой пробы раскалывали пополам, половинки разных кирпичей складывали попарно в определенной последовательности и испытывали сразу, а остальные укладывали на стеллажи и испытывали в той же последовательности через 15 сут. При этом было установлено, что прочность кирпича за это время возросла в среднем на 10,6%, влажность его уменьшилась с 9,6 до 3,5%, а содержание свободной окиси кальция снизилось на 25% первоначального. Таким образом, повышение прочности силикатного кирпича через 15 сут. после изготовления можно объяснить совместным влиянием его высыхания и частичной карбонизации свободной извести.

Термографическими и рентгеноскопическими исследованиями установлено, что после испытания образцов в климатической камере заметных изменений в цементирующей связке не отмечается, а после карбонизации гидросиликаты кальция превращаются в карбонаты и гель кремнекислоты, являющиеся стойкими образованиями, цементирующими зерна песка.

Таким образом, можно считать, что силикатный кирпич, изготовленный из песков различного минерального состава с использованием тонкомолотого вяжущего, является вполне атмосферостойким материалом.

Стойкость в воде и агрессивных средах.

Стойкость силикатного кирпича определяется степенью взаимодействия цементирующего его вещества с агрессивными средами, так как кварцевый песок стоек к большинству сред. Различают газовые и жидкие среды, в которых стойкость силикатного кирпича зависит от их состава. Из этих данных следует, что силикатный кирпич нестоек против действия кислот, которые разлагают гидросиликаты и карбонаты кальция, цементирующие зерна песка, а также против содержащихся в воздухе агрессивных газов, паров и пыли при относительной влажности воздуха более 65%. Необходимо отметить, что приведенные ориентировочные данные относятся к силикатному кирпичу по 53, требования к качеству которого значительно ниже, чем по 79.

Образцы силикатного кирпича подвергали воздействию проточной и непроточной дистиллированной и артезианской воды в течение более 2 лет. В основном коэффициент стойкости образцов падает в первые 6 мес., а затем остается без изменения. Более высокий коэффициент стойкости — у образцов, содержащих 5% молотого песка, а более низкий — у образцов, в состав которых введено 5% молотой глины. Образцы, содержащие 1,5% молотого песка, занимают промежуточное положение: их коэффициент стойкости составляет примерно 0,8, что следует признать достаточно высоким для рядового силикатного кирпича.

Аналогичные образцы подвергали воздействию сильно минерализованных грунтовых вод, содержащих комплекс солей, а также 5%-ного раствора Na2SO4 и 2,5%-ного раствора MgSO4.

Каждые 3 мес. определяли прочность и коэффициент стойкости образцов, находившихся в различных растворах. В растворе Na2SO4 прочность образцов снижается в основном в течение 9 мес., а к 12 мес. она стабилизируется и в дальнейшем не меняется. В отличие от этого прочность образцов, находившихся в растворе MgSO4, падает все время, и они начинают интенсивно разрушаться уже по истечении 15 мес.

Как правило, коэффициент стойкости образцов, содержащих 5% молотого песка, cоставляет в грунтовых водах и растворе Na2SO4 примерно 0,9, содержащих 1,5% молотого песка — 0,8, тогда как у образцов, в состав которых введено 5% молотой глины, в грунтовой воде и 5%-ном растворе Na2SO4 он достигает 0,7. Следовательно, образцы с молотой глиной нельзя признать достаточно стойкими к воздействию агрессивных растворов, а также мягкой и жесткой воды.

Таким образом, силикатный кирпич, в состав которого введено 5% молотого песка, обладает высокой стойкостью к минерализованным грунтовым водам, за исключением растворов MgSO4.

Жаростойкость.

К. Г. Дементьев, нагревавший силикатный кирпич при различной температуре в течение 6ч, установил, что до 200°С его прочность увеличивается, затем начинает постепенно падать и при 600’С достигает первоначальной. При 800°С она резко снижается вследствие разложения цементирующих кирпич гидросиликатов кальция.

Повышение прочности кирпича при его прокаливании до 200°С сопровождается увеличением содержания растворимой SiO2, что свидетельствует о дальнейшем протекании реакции между известью и кремнеземом.

Основываясь на данных исследований и опыте эксплуатации силикатного кирпича в дымоходах и дымовых трубах разрешается применять силикатный кирпич марки 150 для кладки дымовых каналов в стенах, в том числе от газовых приборов, для разделок, огнезащитной изоляции и облицовки; марки 150 с морозостойкостью Мрз35 — для кладки дымовых труб выше чердачного перекрытия.

Теплопроводность.

Теплопроводность сухих силикатных кирпичей и камней колеблется от 0,35 до 0,7 Вт/(мС) и находится в линейной зависимости от их среднейплотности, практически не завися от числа и расположения пустот.

Испытания в климатической камере фрагментов стен, выложенных из силикатных кирпичей и камней различной пустотности, показали, что теплопроводность стен зависит только от плотности последних. Теплоэффективные стены получаются лишь при использовании многопустотных силикатных кирпичей и камней плотностью не выше 1450 кг/м³ и аккуратном ведении кладки (тонкий слой нежирного раствора плотностью не более 1800 кг/м³, не заполняющего пустоты в кирпиче).

Производство силикатного кирпича: области применения, технические характеристики. Подготовка смеси. Формирование силикатного кирпича. Автоклавная обработка

С каждым годов в строительной сфере появляется все больше новых продуктов и материалов, которые либо приживаются в работе, либо так и остаются немного диковинными новинкам, чего никак нельзя сказать о силикатном камне. Производство силикатного кирпича остается востребованным постоянно.

Фото силикатного кирпича

Фото силикатного кирпича

В свое время, появление силикатного кирпича было встречено полностью с положительными эмоциями, а его технические и физические характеристики быстро завоевали популярность среди строителей.

Есть у этого вида материала и свои минусы, и о них мы тоже обязательно скажем, но сейчас давайте поговорим о технологии производства, о составе и об областях применения этого материала.

Состав

Прежде чем начинать производство, нам необходимо понимать, из чего состоит этот материал, разберем его на компоненты:

  • Кварцевый песок.
  • Вода.
  • Известь.

Не правда ли неожиданно?! Но, действительно, когда мы так часто говорим об экологичности силикатного материала, мы имеем в виду именно то, что в его составе только природные компоненты.

Конечно, есть еще и пигмент, который придает кирпичу определенный цвет, но он на качество камня уже не оказывает влияния.

Области применения

Мы к этому вопросу будем возвращаться постоянно при описании процесса изготовления, но сейчас обозначим основные сферы:

  • Гражданское и промышленное строительство. То есть, и двойной силикатный кирпич М 150, и любой другой тип кирпича применяется во всех без исключения областях строительства. позволяет строить из него несущие стены и перегородки в сложных климатических условиях.
  • Прочность позволяет возводить из него несущие конструкции и колонны.
  • Звукоизоляционные особенности прекрасно подводят нас к межкомнатным перегородкам.
Читайте так же:
Кирпич керамический полнотелый одинарный 250х120х65 вес

Плюсы

Теперь пройдемся по основным плюсам кирпича:

    . Это идеальное строительное средство для несущих конструкций. Кстати, можно сравнить кирпич по показаниям прочности с природным камнем!
  • Морозоустойчивость.
  • Звукоизоляция и шумоглащение. . Это означает, что материал долго нагревается, но и очень долго остывает, так что утепленные здания, построенные из силикатных кирпичей, будут всегда в комфортных температурных условия.
  • Экологичность. Как мы уже говорили, природные компоненты в материале остаются неизменными.

Минусы

Как и обещали, не будем скрывать и минусов кирпича, учитывая, что они действительно имеются:

  • Низкая огнеупорность. Кирпич естественно не горит, но и использовать его для кладки печей или других сооружений с высокой температурой нельзя. . Как результат, мы не можем использовать его в возведении фундаментов, цоколей, и вообще конструкций, которые часто подвергаются воздействию воды.

Технические характеристики

Действительно качественный материал определяется по техническим характеристикам. Есть основные моменты, которые стандартны для проверки качества любого изделия:

  • Предел прочности. Этот показатель характеризует прочность кирпича, и они не может быть ниже, чем 120 Мпа. Характеристика встречается нами в маркировке, например строительный кирпич М 100-150-200. Все это показатели прочности. Стоит ли говорить, насколько этот параметр важен при расчетах строительства?!
  • Средняя плотность. Рассчитывается этот показатель так, чтобы он не был ниже, чем 1300 кг/м.
  • Морозостойкость. Определяется количество циклов заморозки и разморозки, в течение которых кирпичик не поддается деформации и разрушению.
  • По огнеупорности, кирпич можно использовать, если температура не будет превышать 550 °C. До этого уровня он гарантированно выдерживает воздействие огня.

Производство

Основные показатели мы рассмотрели, теперь перейдем непосредственно к производству, к тому же оно представлено несколькими этапами, и в каждом есть свои нюансы.

Подготовка смеси

В основе всего процесса заложен автоклавный синтез. Для производства одной штуки материала необходимо:

  • Девять частей просеянного кварцевого песка.
  • Одна доля специальной воздушной извести.
  • Добавки.

Все компоненты смешиваются, и начинается процесс прессовки сухим методом. Это позволяет придать нашему изделию нужную форму.

Готовые кирпичи

Готовые кирпичи

Далее включается автоклавная обработка. Что это такое? Это водяной пар, обычный пар, который подается при температуре 170-200°C, да еще и под давлением в 8-12 атмосфер. При такой обработке смесь и превращается во всем нам известный силикатный кирпич.

Важно. Процесс приобретения камнем цветового оттенка формируется именно в момент смешивания компонентов смеси. Добавляется необходимый пигмент, который и окрашивает кирпич в нужный нам цвет.

Теперь пройдемся по процессу более подробно и остановимся на каждом из этапов.

Силикатная масса

Производство как таковое начинается, как и любой производственный процесс, с подготовительных работ, и здесь это обработка всех компонентов будущего изделия, то есть, работа с сырьем.

Производственное помещение

Производственное помещение

Первым делом производится необходимая дозировка компонентов, которые войдут в сырье. Это будет наша силикатная масса с точными пропорциями.

На каждом отдельном предприятии, заводе по производству, процент содержания извести рассчитывается отдельно. Это зависит от состава и качества известкового сырья. Но в целом, это – 6 – 8%.

Кроме того, на процентное содержание извести оказывает влияние ее время обжига. Если это свежеобожженный материал, то процент будет близок к 6, а если срок хранения извести достаточно большой, и она содержит в своей массе большое количество разнообразных примесей, то процентное соотношение вырастает до 7-8%.

Известь для кирпича

Известь для кирпича

Перед тем, как известь добавляется в основную силикатную смесь она проходит своеобразный контроль активности, причем контрольные замеры проводятся еще несколько раз за время подготовительных работ.

О песке много говорить не приходится, просто скажем, что его доля определяется простым взвешиванием на бункерных весах.

Бункерные весы

Бункерные весы

Для того чтобы у нас получилась смесь, нам необходимо добавить воды. Именно вода является последним компонентом, который завершает процесс гашения извести.

С ней вся смесь превращается в пластичную массу, с которой теперь можно делать формы. Помимо этого, вода отвечает за верное распределение и течение химических реакций в структуре силикатного кирпичика при процессе запаривания.

Как и все остальные компоненты смеси, вода должна быть четко дозирована. Чтобы определить дозировку необходимую для кирпича, проводиться замер влажности кварцевого песка. Это исследование производиться в лаборатории, и от него зависит нормирование воды.

Вся вода, которая поступает в смесь, распределяется следующим образом:

  • 2,5% необходимо для гашения извести в силикатной массе.
  • 3,5% уходит на испарение, которое имеет место при гашении извести.
  • 7% уходит на придание необходимой влажности массе.

Как видим и цена кирпича оттого столь привлекательна, что материалом выступают простые и легкодоступные природные компоненты.

Цех по производству силикатного камня

Цех по производству силикатного камня

Качество силикатного кирпича, это неустанная работа над его лучшими свойствами, тщательный замес и увлажнение массы всех его компонентов.

Как только смесь готова, она по наклонной плоскости подается на конвейер, после чего распределяется по силосам реактора.

Здесь, в реакторе все еще продолжается гашение извести, заодно она обволакивается крупинками кварцевого песка. Все это приводит к усреднению всей массы.

Известь в момент гашения выделяет некоторое количество тепла, которое используется для прессования сырца, то есть процесс производства старается вовлечь все компоненты и рекам в работу.

Формирование силикатного кирпича

Итак, как только смесь признается годной для начала формирования, она подается в приемный бункер пресса. Отсюда начинается распределение массы по дозированным частям, из которых в прессе формируются сырцы.

Именно здесь закладывается будущая форма силикатного кирпича, будет ли он полнотелым или пустотным.

Автоматическое производство дает возможность выпускать несколько типов кирпича:

  • Полнотелый.
  • Пустотный.
  • Пазогребниевый.

Кроме того есть возможность для нескольких габаритов, и это касается в первую очередь высоты. Стандартный размер – 65 мм и помимо него, еще производится материал с высотой 88 и 138 мм.

Важно отметить, что при производстве большое внимание уделяется давлению, при котором происходит формирование кирпичика. Именно от этого показателя зависит прочность изделия, и маркировка, которую оно получает при выходе в продажу.

Естественно, что чем сильнее давление, тем меньше пустот остается в смеси, исключаются воздушные пузыри, в структуре меньше отверстий, и связь всех компонентов намного более прочная.

Наиболее качественный вариант прочного изделия предполагает полное отсутствие воздуха и влаги в формировании связи структуры. Только такая схема производства силикатного кирпича приводит к прочному и плотному изделию, которое способно выдерживать огромные веса.

Прочный полнотелый

Прочный полнотелый

При формировании изделия огромное значение приобретает синхронное воздействие давление на массу. Если сила давления будет резкой и достаточно высокой, то вместо того, чтобы получить готовую структуру кирпича, с прочными и плотными связями, происходит разрушение силикатной массы.

Читайте так же:
Как состарить полнотелый кирпич

Поэтому производство силикатного материала предполагает увеличение давления постепенно, без резких колебаний. По показателям это в районе 150 килограмм на один кубический сантиметр.

Далее переходим постепенно к завершению всего процесса. Как только получается готовый сырец, он вынимается из конвейера пресса. Все происходит автоматически специальными механизмами.

Сырец, по специально заданному режиму, укладывается в автоклавные вагонетки.

Автоклавная обработка

Как мы уже упомянули, автоклавная обработка – это процесс тепло-влажного воздействия на сырец. Все автоклавные вагонетки. С подготовленным сырцом, поступают в автоклав автоматически.

Количество одновременного захода вагонеток регламентируется размерами автоклава. Это, впрочем, к самому процессу отношения не имеет, не оказывая влияние на качество продукции.

Процесс выглядит следующим образом:

  • Крышка автоклава плотно закрывается, причем герметизация обязательна.
  • Следующие два с половиной часа в автоклаве постепенно увеличивается давление водяного пара. Значение давления останавливают на отметке в 0,8+1,2 Мпа.
  • Температура поднимается до +190°С.
  • По истечению 2,5 часов, начинается следующий процесс постоянного давления.
  • В течение 7 часов материал подвергается давлению водяного пара 1.3 Мпа.
  • Температура остается на уровне 188°С.

Далее давление в автоклаве постепенно понижают, выводя его на уровень атмосферного давления. Снижение занимает полтора часа.

Промышленный автоклав

Промышленный автоклав

Общее время производства получается 12 часов. И как видно, с технической стороны, инструкция по производству довольно простая.

Готовый материал упаковывают и развозят. Далее с ним уже можно делать все, что требуется в строительстве.

Заключение

Сферы применения кирпича, как мы уже обозначили, достаточно широкие, и самое главное, что мы можем работать с ним и самостоятельно.

Простота в работе позволяет своими руками строить стены и перегородки, причем возводить их практически круглый год.

Простота производства и цена снова приводят нас к констатации того факта, что это идеальный материал для большинства строительных работ, по крайней мере в малоэтажном строительстве сравниться по полярности с силикатным кирпичом мало кому удается.

Вывод

Силикатные изделия довольно востребованы

Силикатные изделия довольно востребованы

Как мы уже увидели, производство силикатного кирпича – это процесс, основанный на связке природных компонентов под давлением. То есть, ничего вредного и химически опасного нет, а значит, это действительно полностью натуральный строительной материал.

В представленном видео в этой статье вы найдете дополнительную информацию по данной теме.

Кирпич керамический: виды свойства применение

Традиционно под кирпичом понимают брусок, изготовленный из глины. Стоящие века церкви, соборы, стены и башни кремлей и по сей день поражающие своей красотой и монументальностью, выполнены именно из керамического кирпича. Помимо неповторимого внешнего вида, прочности и долговечности, к достоинствам такого кирпича можно отнести огнестойкость, высокую звуконепроницаемость, способность сохранять тепло и уравновешивать колебания температур, «неумение» впитывать из окружающей среды вредные вещества (в том числе радиацию).

По способу изготовления различают кирпичи пластического формования или полусухого прессования. В первом случае подготовленная сырьевая масса формуется экструдером, затем сушится в камере, после чего обжигается в печи при температуре, как правило, от 850 до 1000°С (отдельные типы изделий – свыше 1000°С). Во втором увлажненную глину-сырец формуют прессом под сильным давлением, а затем, минуя сушильную камеру, отправляют в печь. Технология производства ограничивает сферу применения кирпича полусухого прессования. Он имеет высокое водопоглощение, поэтому его нельзя использовать до «нулевого» цикла (фундаменты, цоколи, заборы) и во влажных помещениях. Вместе с тем он получается достаточно гладким и ровным, так что вполне подходит для внутренних перегородок здания.

Строительный кирпич

По назначению керамический кирпич подразделяется на строительный (рядовой), облицовочный и специальный. Строительный служит для возведения несущих стен и перегородок, которые впоследствии облицовываются, штукатурятся, окрашиваются. Поскольку такой кирпич скрыт за декоративным слоем, требования ГОСТа к его внешнему виду минимальные: лицевая поверхность может быть грубой, шершавой, не иметь однородного цвета, допустимы криволинейность, отколы до 10 мм (не более трех на изделие). Важно, чтобы несущая способность кирпича была достаточной. Для лучшего сцепления с кладочным раствором боковые грани кирпича могут быть рифлеными.

Лицевой кирпич

Он предназначен для отделки фасадов и интерьеров. По ГОСТу в нем не допускаются трещины, отколы, известковые включения, пятна, выцветы и другие дефекты. Выбирая лицевой кирпич, надо особенно внимательно следить, чтобы близко к его поверхности или на ней не было комкообразных известковых включений: при попадании влаги они разбухают и разрушают кирпич. Причем обычно «косметический ремонт» не спасает стену – приходится облицовывать ее заново. В ГОСТе четко прописаны требования к геометрии лицевого кирпича: отклонения от номинальных размеров не должны превышать по длине -4 мм, по ширине -3 мм, по толщине +3/–2 мм; непрямолинейность лицевых поверхностей и ребер — не более 3 мм по ложку (длинной боковой грани) и 2 мм по тычку (малой боковой грани). Вместе с тем на практике строго соблюсти эти параметры сложно, поскольку глина – материал «живой», при сушке и обжиге она непредсказуемо меняет свои размеры. Отмечу, что западные строительные нормы вообще не предусматривают допусков по криволинейности. И все же в целом размеры и геометрия лицевого кирпича, как правило, более точные, чем строительного.

Разновидности лицевого кирпича – фактурный (с неровным рельефом – «черепашка», «кора дуба» и пр. или правильным геометрическим рисунком на боковых гранях) и фасонный (полукруглый, угловой, скошенный, с выемками и других форм). Последний позволяет изысканно оформлять окна, карнизы, создавать здания с округленными углами, выполнять арки, своды, колонны. Кроме того, при использовании его исчезает необходимость подрезать обычный лицевой кирпич.

Специальный кирпич

К специальным относят кирпичи, способные «выживать» в экстремальных условиях. Так, кирпич огнеупорный применяется для устройства печей, каминов, дымовых труб. Он изготавливается из шамотной глины путем ее обжига при очень высокой температуре. Этот кирпич имеет высокую плотность и выдерживает частые колебания температур (верхний рубеж – свыше 1000°С); обычно бывает песочно-желтого цвета.

Отдельного упоминания заслуживает клинкерный кирпич. Его получают в результате высокотемпературного обжига пластичных глин отборного качества до полного спекания, без включений и пустот. Благодаря особенностям сырья и специальным технологиям получается исключительно прочное, низкопористое, цвето-, износо-, морозостойкое и, как следствие, долговечное изделие (при том, что химических добавок и красителей в сырьевой смеси нет). Прибавьте к этому обширный диапазон размеров, фактур и цветов («огненные» оттенки красного, сияющий желтый, белый, коричнево-голубоватый, оттенок «под старину», множество других вариантов), и станет понятно, почему клинкер – оптимальное решение для облицовки фасадов и ландшафтных работ: мощения дорожек, автомобильных парковок и подъездов к гаражам, лестниц, открытых террас, водостоков или внутренних двориков.

Силикатный кирпич

Силикатный кирпич – это автоклавный материал, разновидность силикатного бетона на мелком заполнителе, имеющий форму и размеры кирпича. Он состоит примерно из 90% извести, 10% песка и небольшой доли добавок. Добавляя некоторое количество пигментов, можно получать силикатный кирпич различных цветов: синего, зеленого, фиолетового.

Читайте так же:
Блок столба под кирпич

Свойства силикатного кирпича регламентируются ГОСТ 379-79 «Кирпич и камни силикатные. Технические условия». Основные характеристики силикатного кирпича:

  • марка по прочности – М 125, М150;
  • марка по морозостойкости – F15, F25, F35;
  • теплопроводность – 0,38..0,70 Вт/м·°С.

Стандартные размеры силикатного кирпича (одинарного, полуторного, двойного) аналогичны стандартным размерам керамического кирпича. Требования в качеству, геометрии и внешнему виду силикатного кирпича аналогичны требованиям, предъявляемым к керамическому кирпичу.

Технология ведения кладочных работ для силикатного кирпича аналогична технологии кладочных работ для керамического кирпича. Силикатный кирпич получается в результате прессования смеси кварцевого песка и гашеной извести. По внешнему виду и свойствам он существенно отличается от керамического кирпича. Его естественный цвет – чаще всего белый или светло-серый, хотя при добавлении в смесь пигментов можно получить практически любой оттенок. Силикатный кирпич обладает очень высоким водопоглощением, что ограничивает область его применения. Он может использоваться для возведения стен помещений с низкой влажностью воздуха, а также в качестве декоративных вставок в наружные стены из керамики.

Керамическая плитка под кирпич

Помимо собственно кирпичей, сегодня на рынке представлены облицовочные плитки (из разных материалов), имитирующие их внешний вид. Довольно широко распространена керамическая плитка под кирпич. Она сравнительно дешевая, поэтому подходит тем, кто хочет сэкономить, но получить дом с богатой «внешностью», да еще из экологически чистого материала. Плитка также применяется для стилизации под кирпичные зданий, сделанных из других материалов (например из пенобетона), или для облицовки строений, фундамент которых не позволяет использовать кирпич. Между тем некоторые специалисты предупреждают, что нередко плитка и тот материал, к которому она крепится, имеют разный коэффициент температурного расширения, из-за чего облицовка может отваливаться. В то же время для оформления интерьеров плитка – удачный вариант, тем более, что лицевой кирпич внутри помещения занял бы много полезного места.

Бетонная плитка под кирпич

Еще одна альтернатива лицевому кирпичу – бетонная плитка под кирпич. Это разновидность искусственного камня, изготовляемого методом вибролитья или вибропрессования из смеси портландцемента, кварцевого песка, специальных (как правило, органических) наполнителей и добавок. В большинстве случаев бетонная плитка имеет неровный рельеф и стилизована под кирпич древний (нередко будто бы покрытый патиной) или грубо обработанный вручную. Бывают изделия, имитирующие клинкер. Благодаря пигментам-красителям цветовая гамма плиток практически не ограничена, так что, помимо стандартного набора (2 — 9 цветов), производители могут предложить любой цвет на заказ.

Одно из достоинств такой плитки – цветостойкость (конечно, если при изготовлении используются качественные красители). Она обусловлена тем, что обычно бетон окрашивается в массе, поэтому со временем не теряет цвет. Кроме того, плитки обладают очень высокой морозостойкостью – чаще всего 100 — 200 циклов, то есть значительно превышающей требования ГОСТа (70 циклов). Поскольку в создании искусственного камня «участвует» портландцемент, как правило, только высоких марок, изделие получается весьма прочным (марки 200 и выше). Морозостойкость и прочность напрямую связаны с водопоглощением материала: если оно находится в пределах нормы (от 3 до 8%), то плитка надолго сохранит свои механические свойства. Наконец, бетонная плитка легкая. Все это определяет область ее применения: снаружи здания – облицовка фасадов, цоколей, вентиляционных и печных труб или оконных проемов, внутри – отделка стен, лестничных проемов, ступеней, интерьерных колонн.

Характеристики кирпича

Прочность

Прочность — свойство кирпича сопротивляться внутренним воздействиям и нагрузке, не деформируясь. О прочности кирпича говорит его марка.

Марка кирпича

Марка кирпича — говорит о прочности кирпича, этот показатель сообщает какую нагрузку в килограммах на 1 см2 может выдержать данный кирпич. В России существуют следующие марки кирпича: 75, 100, 125, 150, 200, 250, 300. Числовые значения как раз и определяют нагрузку в килограммах.

Размер кирпича

Приняты неизменные стандартные размеры для кирпича: одинарный — 250х120х65 мм, полуторный — 250х120х88 мм, двойной — 250х120х138 мм. За границей существуют другие стандарты размеров кирпича, их намного больше чем в России. Один из самых популярных- 200 х 100 х 50 (65) мм, 240 х 115 х 52 (71) мм.

Морозостойкость кирпича

Характеристика морозостойкости показывает, сколько циклов замораживания и оттаивания без признаков разрушения и снижения прочности может выдержать кирпич. Морозостойкость устанавливается значением «Мрз.» или F. В России существует кирпич со следующими характеристиками морозостойкости: F-15, F-25, F-35, F-50, F-100 и более, где числовое значение — количество произведенных циклов заморозки и оттаивания кирпича. В условиях российского климата необходимо использовать кирпич с показателем не ниже 25.

Пустотность кирпича

Важной характеристикой для строительного и облицовочного кирпича является наличие пустот. На сегодняшний день имеются полнотелые, пустотелые (эффективные) и пустотелые поризованные (сверхэффективные) кирпичи.

Полнотелые кирпичи не содержат отверстий. Полнотелые кирпичи используются обычно для фундаментов и цоколей, т.е. там, где им необходимо выдерживать распределенные нагрузки. Полнотелый кирпич можно применять и для наружной стены, но в этом случае стены должны быть толстыми, около 2 метров, чтобы создать нормативную теплопроводность.

Пустотелые кирпичи имеют сквозные пустоты. Благодаря им, такие кирпичи обладают лучшими теплосберегающими свойствами, поэтому они применяются для строительства стен. Пустотелые кирпичи легче полнотелых, следовательно обеспечивают меньшую нагрузку на фундамент. Лицевой кирпич в основном является пустотелым.

Поризованный кирпич также содержит сквозные пустоты, как и пустотелый, однако такой кирпич отличается пористой структурой. Поризованный кирпич производят с примесью органических веществ, которые выгорают при обжиге и обеспечивают пористую структуру кирпича. Поризованный кирпич обладает лучшей теплопроводностью и, благодаря структуре, он гораздо легче всех других видов кирпича.

Цвет кирпича

Если для рядового кирпича цвет не имеет большого значения, то для лицевого является важным параметром. Лицевой кирпич в настоящее время может быть практически любого цвета, даже неоднородного. Цвет кирпичей во многом определяется технологией обжига, составом, качеством и цветом материала. Для получения разноцветных кирпичей производители смешивают разную глину, а также добавляют к материалу красители. Различные оттенки получают также с применением ангоба и глазури. Ангоб — это тонкий декоративный слой из глины, который наносится на отформованное изделие перед началом процесса обжига. Глазурь — цветной стекловидный слой, который наносится на поверхность кирпича, и создает специфический блеск.

Материал кирпича

Различают керамический и силикатный кирпич.

Керамический кирпич производится с применением глины с различными минеральными добавками и обжигается. Силикатный кирпич производится с применением смеси кварцевого песка, извести и воды.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector